
Polynomial Cutting Plane Algorithms for

Two-Stage Stochastic Linear Programs Based

on Ellipsoids, Volumetric Centers and

Analytic Centers

K. A. Ariyawansa a,∗,1,

aDepartment of Mathematics, Washington State University, Pullman, WA
99164-3113, USA.

P. L. Jiang b,2

bProfessional Services, Delta Dental Plan of Minnesotta, 3560 Delta Dental Drive,
eagan, MN 55122-3166, USA.

Abstract

Traditional simplex-based algorithms for two-stage stochastic linear programs can
be broadly divided into two groups: (a) those that explicitly exploit the structure of
the equivalent large-scale linear program and (b) those based on cutting planes (or
equivalently on decomposition) that implicitly exploit that structure. Algorithms of
group (b) are in general preferred. In 1988, following the work of Karmarkar for
general linear programs, Birge and Qi [11] proposed a specialization of Karmarkar’s
algorithm for two-stage stochastic linear programs. The algorithm of Birge and
Qi [11] is the first interior point analog of group (a). Several other authors have
studied related and different interior point analogs of group (a). Birge and Qi [11]
also presented an analysis of the computational complexity of their algorithm. This
analysis indicates that the computational complexity (in terms of total arithmetic
operations) of their algorithm is in general smaller than that of the Karmarkar’s
algorithm (applied without modification), and is quadratic in the number of realiza-
tions. At the time the present paper was initially prepared in 1996, the only work
on interior point analogs of the preferred group (b) available was the paper by by
Bahn, DU Merle, Goffin and Vial [6], who presented an algorithm based on analytic
centers. However, they did not present results on the complexity of their algorithm.
In this paper, we present three classes of interior point analogs of group (b) based
respectively on the ellipsoid algorithm (Khachiyan [29]), on the notion of volumetric
center (Vaidya [38]) and on the notion of analytic center (Sonnevend [35]). We also
present complexity results which indicate that the complexities (in terms of total
arithmetic operations) of certain members of our three classes of algorithms are
linear in the number of realizations.

Preprint submitted to Elsevier Science 22 October 2006

Key words: Stochastic programming, cutting planes, Van Slyke and Wets
algorithm, ellipsoid algorithm, analytic center, volumetric center.

1 Introduction

Consider the problem

minimize Z(x) := cTx + Q(x)

subject to Ax = b

x ≥ 0 (1)

where 3 x ∈ R
n1 is the decision variable, and A ∈ R

m1×n1, b ∈ R
m1 and c ∈ R

n1

are deterministic data, and Q(x) := E[Q(x, q,h,M ,T)], the expectation with
respect to random data q ∈ R

n1, h ∈ R
m2 , M ∈ R

m2×n2, T ∈ R
m2×n1 of the

value of a function Q. The dependence of function Q on x and a realization q,
h, M and T of q, h, M and T respectively is specified by

Q(x, q, h,M, T) := inf
y∈Rn2

{qTy : My = h− Tx, y ≥ 0}. (2)

We assume that random data have the given discrete probability distribution

{((ql, hl,M l, T l), pl), l = 1, 2, . . . , K} (3)

so that Q(x) =
∑K

l=1 p
lQ(x, ql, hl,M l, T l). In the rest of the paper we use the

term two-stage stochastic program with recourse to refer to the problem defined
by (1,2,3) as outlined above.

Two-stage stochastic programs arise from decision making models that fit into
the following generic context. The vector x is a decision that has to be made at

∗ Corresponding author.
Email addresses: ari@math.wsu.edu (K. A. Ariyawansa),

pjiang@deltadental.org (P. L. Jiang).
URL: www.wsu.edu:8080/ ari (K. A. Ariyawansa).

1 Research of this author was supported in part by NSF Grant CCR-9403892 and
by the U.S. Department of Army under grant DAAD 19-00-1-0465.
2 Supported in part by funds provided by Washington State University in the form
of a summer research assistantship.
3 We use the symbol ‘:=’ to indicate equality by definition in mathematical contexts, and assignment in
statement of algorithms. Bold-face letters denote random variables while corresponding normal-face letters
denote their realizations. We only use column vectors and use the superscript ‘T’ to denote transposition.

2

present (the stage 1), and after a realization ql, hl, M l and T l of the random
data becomes available at a later time (the stage 2), a recourse decision y l

may be taken if hl − T lx 6= 0 with an associated technological matrix M l and
unit cost vector ql.

“Usual” instances of stochastic programs have the following three features
due to the above decision making models from which they arise. First, the
number of realizations K is “large”. Second, for “most” x satisfying Ax = b
and x ≥ 0, there exists yl ≥ 0 such that M lyl = hl − T lx for l = 1, 2, . . . , K.
Third, the decision variable x is more important than the decision variables
yl, l = 1, 2, . . . , K.

We refer to the representation (1,2,3) of two-stage stochastic linear programs
as the recourse formulation. The representation (1,2,3) is mathematically equiv-
alent to the linear program (lp)

minimize Z = cTx +
K
∑

l=1
pl(ql)Tyl

subject to Ax = b

T lx + M lyl = hl, l = 1, 2, . . . , K

x, yl ≥ 0, l = 1, 2, . . . , K

(4)

which we refer as the full-lp formulation. Note that in the recourse formulation
the decision variable x is treated directly receiving prominence over the deci-
sion variables yl, l = 1, 2, . . . , K, whereas in the full-lp formulation, decision
variables x and yl, l = 1, 2, . . . , K receive similar prominence. Note also that
formulation (4) has a “large” number of constraints, and even though “most”
of them are “loose” they are explicitly included in (4). On the other hand,
these constraints are taken into account implicitly in the recourse-formulation.
Therefore, given our comments above on “usual” instances of stochastic pro-
grams, the recourse formulation is more natural than the full-lp formulation.

Algorithms for two-stage stochastic programs can be broadly divided into two
groups depending on whether the recourse formulation (1,2,3), or the full-
lp formulation (4) is emphasized. Simplex-based algorithms due to Kall [28],
Straziky [36], and Wets [41] emphasize the full-lp formulation and explicitly
exploit the structure of the lp in (4) to reduce the computational work. These
algorithms solve the dual of (4) and utilize its structure to work with a ba-
sis requiring n2

1 + Kn2
2 locations rather than one required with (n1 + Kn2)

2

locations if that structure were ignored.

3

Birge and Qi [11] presented the first interior point algorithm of this type. Let

Â :=





























A 0 0 . . . 0

T 1 M1 0 . . . 0

T 2 0 M2 . . . 0
...

...
...

. . .
...

TK 0 0 . . . MK





























be the constraint matrix of the lp (4), and b̂ := [(b)T, (h1)T, (h2)T, . . . , (hK)T]T

be its right-hand-side. Birge and Qi [11] showed how the structure of Â can be
utilized to solve the system (ÂD2ÂT)d = b̂ arising in interior point methods for
the lp (4), so that the complexity of the resulting specialization of Karmarkar’s
algorithm is

O((n0.5n2
2 + nmax{n1, n2} + n3

1)nL) (5)

arithmetic operations, where n := n1 + Kn2. This is in general smaller than
O(n3.5L) complexity of Karmarkar’s algorithm applied directly on the lp (4).
Note that the complexity bound (5) is quadratic 4 in K. Birge and Holmes
[10], and Jessup, Yang and Zenios [26] present efficient implementations of
the Birge and Qi [11] algorithm. The “split variable technique” presented by
Lustig, Mulvey and Carpenter [30] (see also [14]) for formulating two-stage
stochastic programs for interior point methods also works with the full-lp
formulation.

The most popular simplex-based algorithm based on the recourse formulation
is the one originally due to Van Slyke and Wets [40] and later extended by
Wets [41]. (See also Dantzig and Madansky [16].) The operations of the algo-
rithm can be interpreted as being based on cutting planes generated from the
minimizer of an lp relaxation of the problem. It terminates after a finite num-
ber of iterations, but there are no polynomial complexity results. See [9,22,3]
for implementations of the algorithm.

As indicated above, the recourse formulation is more natural than the full-lp
formulation. Therefore, given the rapid spread of research on interior point
methods to areas of mathematical programming other than linear program-
ming, one would expect to have interior point methods for stochastic linear
programs based on the recourse formulation. However, the only direct work

4 It is possible to derive an algorithm based on full-lp formulation similar to the algorithm of Birge and
Qi [11] but specializing the path-following algorithm rather than Karmarkar’s algorithm with a complexity
that depends on K1.5 as opposed to K2. This follows from the work of Renegar [34] for general linear
programming. The work of Birge and Qi [11] was performed prior to that of Renegar [34].

4

known to us at the time the present paper was initially 5 prepared was due to
Bahn, DU Merle, Goffin and Vial [6].

The operations of the algorithm of Bahn et al. [6] may be interpreted as being
based on cutting planes generated from the analytic center [35] of a certain set
of localization. Bahn et al. [6] give no complexity results for their algorithm.
Their computational results indicate that the algorithm compares well with
the simplex-based cutting plane methods.

Although there is no work other than that of Bahn et al. [6] directly related
to interior point algorithms for stochastic linear programs based on the re-
course formulation, papers [37,38,23,42,24,43,17,31,20,5,2,4,33] are indirectly
related since they deal with topics such as cutting planes, decomposition and
column generation in connection with interior point methods. In particular,
our work is motivated by the elegant papers by Vaidya [37–39], Atkinson and
Vaidya [4], and by Anstreicher [2,1]. These papers mainly deal with the con-
vex feasibility problem: given convex S ⊂ R

n find x ∈ S. There are several
important features of this work that motivated us to adapt it for obtaining
algorithms for stochastic linear programs based on the recourse formulation.
First, the algorithms do not explicitly use a full representation of S. Instead,
they assume that there is an oracle with the following properties. It takes any
x̄ ∈ R

n as input, and if x̄ ∈ S it indicates so. If x̄ /∈ S it returns a D ∈ R
n

and d ∈ R such that for all x ∈ S, DTx ≥ d and DTx̄ < d; i.e. D and d
specify a cutting plane. Second, while in some of the algorithms these cutting
planes are generated based on the notion of analytic center of a polyhedral
set, in some other algorithms they are generated based on the newer notion
of volumetric center due to Vaidya. Finally, these authors relate their work to
the ellipsoid method [29,12] which despite its poor practical performance in
some problems is theoretically important. Indeed, the work of Vaidya [37,38],
Atkinson and Vaidya [4], and Anstreicher [2,1] is such that an ideal applica-
tion is in obtaining “interior point cutting plane algorithms” for stochastic
linear programs based on the recourse formulation with proofs of polynomial
complexity results.

In this paper we derive three classes of algorithms for two-stage stochastic
linear programs based on the recourse formulation (1,2,3). The three classes
utilize the ellipsoid method [29,12], the notion of volumetric center [38], and

5 This paper was initially prepared and submitted for publication in 1996. It is part
of the doctoral dissertation [27] of the second author completed in 1997. While this
paper was being refereed and revised, a few papers containing material relevant to
this paper (some referencing the initial version of this paper and [27]) became avail-
able. The results in this paper however are still new. The present version therefore
contains a new §7 in which we indicate the connections of these contributions to
our work. However, references to literature in other sections of the paper have not
been altered.

5

the notion of analytic center [35] respectively. We also obtain polynomial com-
plexity results for the three classes of algorithms. These results indicate that all
three classes contain members with complexities that are linear in K, in com-
parison to (5) for the algorithm of Birge and Qi [11] that depends quadratically
on K. Before proceeding further, it is worthwhile pointing out that the real-
tionship of our work to the body of work in [37,38,23,42,24,43,17,31,20,5,2,4,33]
is similar to the relatiosnhip of the work of Van Slyke and Wets [40] to the
work of Benders [7] (and Dantzig and Wolfe [15]). See also the interesting
footnote in [40, p. 639] on a comment by E. Balas on that latter relationship.

The rest of this paper is structured as follows. We first consider the case of
(1,2,3) with K := 1:

minimize Z(x) := cTx + Q(x)

subject to Ax = b

x ≥ 0 (6)

with

Q(x) := inf
y∈Rn2

{qTy : My = h− Tx, y ≥ 0} (7)

where we have omitted the superscript 1. As we shall see in §6, we do not lose
generality, and our presentation and notation become considerably easy. The
corresponding full-lp formulation is

minimize Z = cTx + qTy

subject to Ax = b

Tx + My = h

x, y ≥ 0

(8)

which is referred to as an L-shaped lp by Van Slyke and Wets [40]. Note that
in (8) and consequently in (6,7) we can assume without loss of generality that

6

b = 0 since (8) is equivalent to

minimize Z = [cT, 0]







x

s






+ qTy

subject to [A,−b]







x

s





 = 0







T 0

0T 1













x

s





 +







M

0T





 y =







h

1













x

s






, y ≥ 0.

In fact, we can similarly assume that b = 0 in (4) and (1,2,3) without loss of
generality, and we shall do so in the rest of the paper.

Let

S1 := {x ∈ R
n1 : Ax = 0},

S2 := {x ∈ R
n1 : x ≥ 0}, and

S3 := {x ∈ R
n1 : (∃y ∈ R

n2 : My = h− Tx, y ≥ 0)}.

Then (6) is equivalent to

minimize Z(x) := cTx+ θ

subject to Q(x) ≤ θ

x ∈ S := S1 ∩ S2 ∩ S3 (9)

where Q is as defined in (7). Throughout the paper we assume that

(A1) A has full row rank, and
(A2) (9) has a minimizer [(x∗)T, θ∗]T.

In §§2, 3 and 4 we present three classes of algorithms for (9) based respec-
tively on the ellipsoid method, on volumetric centers, and on analytic centers
together with results on their complexities. In doing so, we need to frequently
use projections z̄ of z := [xT, θ]T ∈ R

n1+1 onto S ′
1 := {z : z = [xT, θ]T, x ∈ S1},

7

the (n1 − m1 + 1)-dimensional “vertical” hyperplane corresponding to S1 in
R

n1+1. In fact, we have z̄ := [x̄T, θ̄]T = Pz where

P =







PA 0

0T 1





 , and PA := I − AT(AAT)−1A.

(Note that θ̄ = θ.) In the rest of the paper a “bar” over vectors (and their
components) in R

n1+1 indicates such projections (and their components). In
these three sections we assume that we have an oracle that does the following.
Suppose that the oracle is presented with [x̄T, θ̄]T satisfying Ax̄ = 0 and x̄ ≥ 0
(i.e. x̄ ∈ S1 ∩ S2). Then the oracle decides whether x̄ ∈ S3 or not. If it decides
that x̄ /∈ S3, it returns D ∈ R

n1 and d ∈ R such that DTx ≥ d for all x ∈ S3

and DTx̄ < d. If the oracle concludes that x̄ ∈ S3, then it decides whether
Q(x̄) ≤ θ̄ (i.e. whether [x̄T, θ̄]T is feasible for (9)) or not. If it decides that
Q(x̄) > θ̄ then it returns E ∈ R

n1 and e ∈ R such that ETx + θ ≥ e for all
[xT, θ]T feasible for (9) and ETx̄ + θ̄ < e. If it decides that Q(x̄) ≤ θ̄ then
it returns θ′, the value of the objective function in the lp (7) at any feasible
point, that satisfies θ′ ≤ θ̄. Readers familiar with the work of Van Slyke
and Wets [40] on simplex-based cutting plane algorithms for stochastic linear
programs would recognize that these are the analogs of the “feasibility cuts”
and “optimality cuts” in the terminology of [40]. However, as we shall see in
§5, the oracle does not necessarily have to solve lp’s exactly to specify these
cuts. We shall indicate several ways the work of the oracle may be performed
in §5 together with estimates of the corresponding costs. In §6 we shall indicate
how the algorithms stated in §§2,3 and 4 for the special case with K := 1 can
be used to obtain corresponding algorithms for (1,2,3). We conclude the paper
in §7, where we discuss the relationship of the contribution of this paper to
those of several other papers that have appeared after this paper was initially
submitted for publication and was in the process of being refereed and revised.

2 A class of cutting plane algorithms for L-shaped linear programs
based on the ellipsoid method

The theoretical significance of the ellipsoid method [29,12] in linear, nonlinear
and combinatorial optimization is profound. See [25] for example. To the best
of our knowledge however, there is no ellipsoidal analog of the simplex-based
cutting plane algorithms such as that of Van Slyke and Wets [40] for L-shaped
lp’s (9) and stochastic linear programs (1,2,3). In this section, we present a
class of algorithms for L-shaped lp’s based on the ellipsoid method.

8

2.1 The description of algorithms

We begin with x0 ∈ R
n1, θ0 ∈ R and an ellipsoid E0 := {z ∈ R

n1+1 :
(z − z0)

TB−1
0 (z − z0) ≤ 1} where z0 := [xT

0 , θ0]
T and B0 ∈ R

(n1+1)×(n1+1)

is symmetric and positive definite, so that int (E0) contains a minimizer z∗ :=
[(x∗)T, θ∗]T of (9). We can choose B0 := 22LI with L > 0 sufficiently large. At
the beginning of iteration k(≥ 0) we have the ellipsoid Ek := {z ∈ R

n1+1 :
(z − zk)

TB−1
k (z − zk) ≤ 1} with center zk and symmetric, positive defi-

nite Bk ∈ R
(n1+1)×(n1+1) with z∗ ∈ int (Ek). Now we compute the projection

z̄k := [x̄T

k , θ̄k]
T = Pzk so that x̄k = PAxk ∈ S1 and θ̄k = θk.

Case 1. x̄k 6∈ S2.
Then there exists jk with 1 ≤ jk ≤ n1 such that eT

jk
x̄k < 0. We add the cut

ēTjk
x ≥ 0 (10)

where ējk
:= PAejk

. All x such that x̄ ∈ S1 ∩ S2 satisfy the cut (10) (see
Lemma 1 below) while xk violates it.

Case 2. x̄k ∈ S2.
So, Ax̄k = 0 and x̄k ≥ 0 and we call the oracle.
Subcase 2.1. The oracle indicates that x̄k /∈ S3.

In this case as we indicated in §1, the oracle returns Dk ∈ R
n1 and dk ∈ R

such that DT

k x ≥ dk for all x ∈ S3 and DT

k x̄k < dk. We add the cut

D̄T

k x ≥ dk (11)

where D̄k := PADk. The cut (11) is satisfied by any x such that x̄ ∈
S1 ∩ S2 ∩ S3 (see Lemma 1 below) and is violated by x̄k.

Subcase 2.2. The oracle indicates that x̄k ∈ S3.
In this case, as indicated in §1, the oracle decides whether Q(x̄k) ≤ θ̄k or
not. We have two further subcases.
Subcase 2.2.1. The oracle decides Q(x̄k) > θ̄k.

In this case [x̄T

k , θ̄k]
T is not feasible for (9) and the oracle returns Ek ∈

R
n1 and ek ∈ R such that ET

k x + θ ≥ ek for all [xT, θ]T feasible for (9)
and ET

k x̄k + θ̄k < ek. We add the cut

ĒT

k x + θ ≥ ek (12)

where Ēk := PAEk. The cut (12) is satisfied by any z := [xT, θ]T such
that Pz = [x̄T, θ̄]T is feasible for (9) (see Lemma 1 below) and violated
by [x̄T

k , θk]
T.

Subcase 2.2.2. The oracle decides Q(x̄k) ≤ θ̄k.
In this case [x̄T

k , θ̄k]
T is feasible for (9) and the oracle return θ′k the

value of the objective function in the lp (7) at any feasible point with
θ′k ≤ θ̄k. We have the upper bound Zk := (c)Tx̄k + θ′k ≤ (c)Tx̄k + θ̄k and

9

we add the cut

c̄Tx + θ ≤ Zk (13)

where c̄ := PAc. Note that (13) is satisfied by all [xT, θ]T such that
Pz = [x̄T, θ̄]T is feasible for (9) with objective function value not greater
than Zk.

In the sequel, we refer to a cut of the form (13) as the objective cut, and
cuts of the form (10), (11) and (12) as nonobjective cuts. The cuts (10),
(11), (12) and (13) can all be expressed in the form aT

k z ≤ ck for appropriate
ak ∈ R

n1+1 and ck ∈ R. We then construct the minimum volume ellipsoid
Ek+1 := {z ∈ R

n1+1 : (z − zk+1)
TB−1

k+1(z − zk+1) ≤ 1} defined by center
zk+1 and symmetric, positive definite Bk+1 ∈ R

(n1+1)×(n1+1) containing the set
{z ∈ Ek : aT

k z ≤ ck} using the update formulae in [12]. Specifically,

zk+1 := zk − τkBkak/(a
T

kBkak)
1/2 (14)

Bk+1 := δk(Bk − σkBkaka
T

kBk/a
T

kBkak) (15)

where m := n1 + 1, αk := (aT

k zk − ck)/(a
T

kBkak)
1/2, τk := (1 +mαk)/(m + 1),

δk := (1 − α2
k)m

2/(m2 − 1), and σk := 2(1 +mαk)/[(1 + αk)(m+ 1)].

It is easy to show that the cuts (10), (11), (12) and if Zk < cTx̄k + θ̄k the cut
(13) are ‘deep’ in the sense of [12]. We also have from [12] that

Vol(Ek+1)

Vol(Ek)
< exp

[

− 1

2(n1 + 2)

]

. (16)

As we shall see in §5, the work of the oracle may be performed in many ways.
We have thus described the following class of ellipsoid algorithms for (9).

Algorithm Class 1.

Initialization:

choose x0 ∈ R
n1, θ0 ∈ R and L > 0 such that with z0 := [xT

0 , θ0]
T,

B0 := 22LI ∈ R
(n1+1)×(n1+1) and E0 := {z ∈ R

n1+1 : (z − z0)
TB−1

0 (z − z0)
≤ 1}, a minimizer z∗ of (9) is in int(E0).

Main Step:

begin

for k = 0, 1, . . . do
z̄k := [x̄T

k , θk]
T := Pzk;

10

if x̄k /∈ S2 then
choose jk such that eT

jk
x̄k < 0;

ējk
:= PAejk

;
ak := [−ēT

jk
, 0]T; ck := 0;

else
call the oracle;
if oracle decides x̄k /∈ S3 then

D̄k := PADk;
ak := [−D̄T

k , 0]T; ck := −dk;
else

if the oracle decides Q(x̄k) > θ̄k then
Ēk := PAEk;
ak := [−ĒT

k ,−1]T; ck := −ek;
else

Zk := cTx̄k + θ′k;
ak := [c̄T, 1]T; ck := Zk;

end if;
end if;

end if;
update zk and Bk to zk+1 and Bk+1 respectively using (14,15);

end for;
end

2.2 The complexity of the algorithms

We now analyze the complexity of Algorithm Class 1. In order to do that we
need the following definitions. Let

SP :=

















x

θ





 ∈ R
n1+1 : P







x

θ





 =







PAx

θ





 is feasible for (9)











,

and given a tolerance ε > 0 let

Sε :=

















x

θ





 ∈ R
n1+1 :







x

θ





 ∈ SP , c
Tx̄ + θ̄ ≤ cTx∗ + θ∗ + ε











. (17)

Further, if {zk := [xT

k , θk]
T} is the sequence generated by Algorithm 1, define

Ẑk+1 :=











Zk+1 if Zk+1 < Ẑk

Ẑk otherwise,
(18)

11







x̂k+1

θ̂k+1





 :=













































x̂k

θ̂k






if Ẑk+1 = Ẑk







x̄k+1

θ̄k+1





 otherwise,

(19)

for k = 0, 1, . . . where x̂0 := x̄0, θ̂0 := θ̄0 and Z0 := +∞, Ẑ0 := +∞. Note that
[x̂T

k , θ̂k]
T is the best solution to (9), given the iterates 0, 1, . . . , k generated by

the algorithm.

We need the following two lemmas before we present our main result on the
complexity of members of Algorithm Class 1.

Lemma 1 The cuts (10), (11) and (12) are satisfied by every element of SP .

PROOF. Take any [xT, θ]T ∈ SP . We have ēT

jk
x = eTjk

(PAx) ≥ 0 for the cut
(10), D̄T

k x = DT

k (PAx) ≥ dk for the cut (11), and ĒT

k x+θ = ET

k (PAx)+θ ≥ ek

for the cut (12). 2

Lemma 2 Suppose that [x̂T

k , θ̂k]
T /∈ Sε for some k ≥ 0. Then every element

of Sε satisfies the cut (13).

PROOF. For any [xT, θ]T ∈ Sε, we have

c̄Tx + θ= cT(PAx) + θ

= cTx̄ + θ̄

≤ cTx∗ + θ∗ + ε ≤ Zk.

The first inequality is due to the fact that [xT, θ]T ∈ Sε, and the second
inequality is true because [x̂T

k , θ̂k]
T /∈ Sε and consequently [x̄T

k , θ̄k] /∈ Sε. 2

We now have our main result of this section.

Theorem 3 Suppose that the set Sε ∩ E0 contains a ball of radius 2−L. Let
N := 4(n1 + 1)(n1 + 2)L ln 2. Let the sequence {[xT

k , θk]
T} be generated by a

member of Algorithm Class 1 and let the sequence {[x̂T

k , θ̂k]
T} be defined by

(18,19). Then, [x̂T

k , θ̂k]
T ∈ Sε for all k ≥ N̂ for some N̂ ≤ N . The complexity

of the algorithm is O(ωn2
1L + n4

1L) arithmetic operations where ω is the cost
of a call to the oracle in arithmetic operations.

12

PROOF. Suppose by contradiction that [x̂T

N , θ̂N]T 6∈ Sε. Then by the deriva-
tion of the algorithm and Lemmas 1 and 2, we have EN ⊃ Sε ∩ E0. So
Vol(EN) > Vol(Sε ∩ E0) and by (16)

exp

[

−N
2(n1 + 2)

]

>
Vol(Ek)

Vol(E0)
≥ Vol(Sε ∩ E0)

Vol(E0)
≥ 2−2(n1+1)L.

We get N < 4(n1 + 1)(n1 + 2)L ln 2 = N , a contradiction.

Since N = O(n2
1L) and the number of arithmetic operations per iteration of a

member of Algorithm Class 1 is O(ω+ n2
1), the complexity is O(ωn2

1L+ n4
1L)

arithmetic operations. 2

3 A class of cutting plane algorithms for L-shaped linear programs
based on volumetric centers

The volumetric cutting plane method was first proposed by Vaidya [38] and
was later simplified and strengthened by Anstreicher [2] for solving the convex
feasibility problem. In the sequel we show how the volumetric cutting plane
algorithm described in [2] may be modified for problem (9). We also show that
in terms of the number of iterations its complexity is O(n1L) which is a factor
of n1 less than that of the ellipsoid method.

Let P be the bounded full-dimensional polytope

P := {z ∈ R
(n1+1) : Λz ≥ β} (20)

where Λ ∈ R
m×(n1+1) and β ∈ R

m. For simplicity, we denote P by P = [Λ, β].
The volumetric center w of P is the point that minimizes the volumetric barrier
V : int(P) → R defined by V (z) := 1

2
ln[det(ΛTS(z)−2Λ)] where s(z) :=

Λz − β > 0 and S(z) := diag(s(z)). For z with s = s(z) > 0, define P (s) :=
S−1Λ(ΛTS−2Λ)−1ΛTS−1 and let P (2) = P ◦ P , where ◦ denotes the Schur

product (i.e., P
(2)
ij = P 2

ij, ∀i, j). Define σi := Pii for i = 1, 2, . . . , m and
Σ := diag([σ1, 2, . . . , σm]T). Then the gradient g and Hessian H of V at z are
given by

g := g(z) = ∇V (z) = −ΛTS−1σ and

H :=H(z) = ∇2V (z) = ΛTS−1(3Σ − 2P (2))S−1Λ.

13

Note that

σi(z) =
αT

i (ΛTS−2Λ)−1αi

(αT
i z − βi)2

, i = 1, 2, . . . , m. (21)

Define µ = µ(z) := (2
√
σmin−σmin)−1/2 where σmin = σmin(z) = min1≤i≤m σi(z).

First we state some results on the volumetric barrier function that we need in
the sequel. Their proofs can be found in Anstreicher [2] or Vaidya [38].

Lemma 4 For any z ∈ P, we have

(a) σi ≤ 1, ∀i.
(b)

∑m
i=1 σi = n1 + 1.

PROOF. See Vaidya [38]. 2

Let Q = Q(z) := ΛTS−2ΣΛ, then Q(z) is a good approximation of H(z) in
the sense that

Q(z) � H(z) � 3Q(z).

where A � B iff B−A is positive semidefinite for symmetric positive semidef-
inite A, B.

Let p = p(z) := −H−1g denote the Newton direction for V at z. We will use
the notation that ẑ := z + p, ŝ := s(ẑ), ĝ := g(ẑ), p̂ := p(ẑ), Ĥ := H(ẑ),
Q̂ := Q(ẑ). Also, for symmetric positive definite matrix A and vector z define
||z||A :=

√
zTAz.

Lemma 5 Let z have s = s(z) > 0. Assume that µ||p||H ≤ .014, and let
ẑ = z + p, then

(a) ||p̂||Ĥ ≤ 21.6µ||p||2H,

(b) µ̂||p̂||Ĥ ≤ 21.6µ2||p||2H,

(c) V has a unique minimizer w in the interior of P, and V (z) − V (w) ≤
1.11||p||2H.

PROOF. See [2, Lemma 2.4] and [2, Theorem 2.6]. 2

14

3.1 The description of algorithms

Our algorithm begins with the simplex

P0 := [Λ0, β0] with Λ0 :=







In1+1

−eT





 , β0 :=







−2Le

−(n1 + 1)2L





 (22)

containing a minimizer z∗ := [(x∗)T, θ∗]T of (9), where e = (1, 1, . . . , 1)T ∈
R

n1+1. As indicated in [2] the volumetric center z0 of P0 is given by

z0 := (
n1

n1 + 2
)2Le, (23)

and the value of V at z0 is V 0(z0) = − ln 2(n1 + 1)(L + 1) + (n1 + 1) ln[1 +
1/(n1 + 1)] + ln(2 + n1).

At the beginning of iteration k(≥ 0) we have a point zk ∈ R
n1+1, and a

polyhedral set

Pk := [Λk, βk] (24)

where Λk ∈ R
mk×(n1+1) and βk ∈ R

mk . Now we compute σk
min := σmin(zk) and

consider the following two cases where σ̄ ∈ (0, 1) is a given constant.

Case 1. σk
min ≥ σ̄.

In this case a constraint is added or translated. Let the projection z̄k :=
[x̄T

k , θ̄k]
T = Pzk so that x̄k = PAxk ∈ S1 and θ̄k = θk.

Subcase 1.1. x̄k 6∈ S2.
Then there exists jk with 1 ≤ jk ≤ n1 such that eT

jk
x̄k < 0. We let

αk := [ēT

jk
, 0]T, where ēT

jk
= PAejk

.
Subcase 1.2. x̄k ∈ S2.

So, Ax̄k = 0 and x̄k ≥ 0 and we call the oracle.
Subcase 1.2.1. The oracle indicates that x̄k /∈ S3.

In this case as we indicated in §1, the oracle returns Dk ∈ R
n1 and

dk ∈ R such that DT

k x ≥ dk for all x ∈ S3 and DT

k x̄k < dk. We let
αk := [D̄T

k , 0]T, where D̄k = PADk.
Subcase 1.2.2. The oracle indicates that x̄k ∈ S3.

In this case as indicated in §1, the oracle decides whether Q(x̄k) ≤ θ̄k

or not. We have two further subcases.
Subcase 1.2.2.1. The oracle decides Q(x̄k) > θ̄k.

In this case [x̄T

k , θ̄k]
T is not feasible for (9) and the oracle returns Ek ∈

R
n1 and ek ∈ R such that for all [xT, θ]T feasible for (9) ET

k x+θ ≥ ek

and ET

k x̄k + θ̄k < ek. We let αk := [ĒT

k , 1]T, where Ēk = PAEk.

15

Subcase 1.2.2.2. The oracle decides Q(x̄k) ≤ θ̄k.
In this case [x̄T

k , θ̄k]
T is feasible for (9). We let αk := [−c̄T,−1]T,

where c̄ = PAc.
We now describe how we update Pk = [Λk, βk] after addition or transla-

tion of a cut.
(a) If αk is not used in constructing Λk, then we add the cut

αT

k z ≥ βk
mk+1 (25)

with βk
mk+1 satisfying αT

k zk > βk
mk+1 and

αT

k ((Λk)T(Sk)−2Λk)−1αk

(αT

k zk − βk
mk+1)

2
= τ (26)

where τ > 0 is a suitably chosen constant. Let mk+1 := mk + 1,

Λk+1 :=







Λk

(αk)T





 , and βk+1 :=







βk

βk
mk+1





 .

(b) If αk is already used in constructing Λ, let αT

jk
z ≥ βk

jk
be the corre-

sponding constraint in the system. Then we translate it to the cut

αT

jk
z ≥ β̃k

jk
(27)

with β̃k
jk

satisfying αT

jk
zk > β̃k

jk
> βk

jk
and

αT

jk
((Λk)T(Sk)−2Λk)−1αjk

(
1

(αT
jk
zk − β̃k

jk
)2

− 1

(αT

jk
zk − βk

jk
)2

) = τ1,

where τ1 > 0 is also a suitably chosen constant. Let mk+1 := mk, and Λk+1

and βk+1 be Λk and βk respectively with the jk-th row translated. Note that
translation is especially important relative to the objective cut.

Case 2. σk
min < σ̄.

In this case a constraint is removed. Let σk
jk

:= σk
min. Then the constraint

(eTjk
Λk)z ≥ βk

jk
(28)

is deleted. Let mk+1 := mk−1, and Λk+1 and βk+1 be Λk and βk respectively
with the jk-th row removed.

When a constraint is added, translated or deleted the volumetric center shifts.
A sequence of pure Newton steps is performed beginning with the current
iterate zk to obtain the next iterate zk+1 ‘sufficiently close’ to the volumetric

16

center wk+1 of the new polyhedral set. The ‘closeness’ of zk+1 to wk+1 is mea-
sured in terms of the closeness of V k+1(zk+1) and V k+1(wk+1). Specifically, we
use V k+1(zk+1) − V k+1(wk+1) ≤ δ where δ ∈ (0, 1) is a given constant.

Our discussion above leads to the following class of volumetric center cutting
plane algorithms for (9).

Algorithm Class 2.

Initialization:

choose L > 0 so that z∗ ∈ int P0 where P0 is as in (22), and
σ̄ ∈ (0, 1), τ > 0 and τ1 > 0;
define z0 by (23).

Main Step:

begin

for k = 0, 1, . . . do
σk

min := σmin(zk);
if σk

min ≥ σ̄ then
z̄k := [x̄T

k , θk]
T := Pzk;

if x̄k /∈ S2 then
choose jk such that eT

jk
x̄k < 0;

ējk
:= PAejk

;
αk := [ēT

jk
, 0]T;

else
call the oracle;
if oracle decides x̄k /∈ S3 then

D̄k := PADk;
αk := [D̄T

k , 0]T;
else

if the oracle decides Qx̄k > θ̄k then
Ēk := PAEk;
αk := [ĒT

k , 1]T;
else

αk := [−c̄T,−1]T;
end if;

end if;
end if;
define Λk+1 and βk+1 as in Case 1 above to
add the cut (25) and let mk+1 := mk + 1
or translate the jk-th cut to (27) and let mk+1 := mk;

else

17

mk+1 := mk − 1;
define Λk+1 and βk+1 as in Case 2 above to
delete the cut (28);

end if;
beginning with zk, take a sequence of pure Newton steps to obtain
zk+1 ‘close’ to new volumetric center;

end for;
end

3.2 The complexity of the algorithms

We begin by analyzing the effect of adding, translating and deleting a cut on
the volumetric barrier function. For notational simplicity we omit the subscript
k and adopt the following convention. The current constraint system is given
by [Λ, β], where Λ is a m × (n1 + 1) matrix. Let z be the current point with
s = s(z) > 0. We use [Λ̃, β̃] to express the constraint system after the addition,
translation or deletion of a cut.

(i) Adding a constraint

Lemma 6 Suppose that a constraint (αT

m+1, βm+1) is added in the Algorithm.
Then

(a) Ṽ (z) = V (z) + (1/2) ln(1 + τ),
(b) σ̃m+1 = τ/(1 + τ) and σi ≥ σ̃i ≥ σi/(1 + τ), i = 1, 2, . . . , m, and

(c) ||p̃||H̃ ≤
√

1 + τ [
√

3||p||H + τ(1 +
√

τ/σ̄)/(1 + τ)].

PROOF. See [2, Lemma 4.1], [2, Lemma 4.2] and [2, Theorem 4.3]. 2

Lemma 7 Suppose that the point z has s = s(z) > 0, and ||p||H ≤ r1 =
.0007, µ||p||H ≤ r2 = .0035, and that σ̄ = .0004. Suppose that a constraint
(αT

m+1, βm+1) is added with τ = .00056. In the new constraint system [Λ̃, β̃],

after one Newton step, i.e., ẑ = z + p̃, p̃ = p̃(z) = H̃−1g̃, we have

(a) ||p̂||Ĥ ≤ r1,
(b) µ̂||p̂||Ĥ ≤ r2, and
(c) Ṽ (ẑ) ≥ V (z) + 4V +, where 4V + = .000273.

PROOF. See [2, Theorem 6.1]. 2

Lemma 7 implies that the Algorithm requires only a single Newton step after
a constraint addition.

18

(ii) Translating a constraint
As mentioned earlier translating a cut is especially relevant for the objective
cut. To the best of our knowledge the effect of translating a cut on the vol-
metric center has not been previously analyzed. If translation is not allowed
then multiple objective cuts with the same left-hand-side and different right-
hand-sides may be present in the constraint system. Of course that would
imply maintaining redundant cuts. Since we allow translation of existing cuts,
the constraint systems of volumetric center algorithms presented in this paper
contain at most one objective cut at any given time.

Without loss of generality we assume that the m-th constraint is translated.
Let s̃m := αT

mz − β̃m. Then

τ1 = (
1

s̃2
m

− 1

s2
m

)αT

m(ΛTS−2Λ)−1αm. (29)

We note that s̃m < sm and β̃m > βm.

Lemma 8 Suppose that a constraint (αT

m, βm) is translated to (αT

m, β̃m), and
τ1 > 0 is given by (29). Then

(a) Ṽ (z) = V (z) + (1/2) ln(1 + τ1),
(b) σ̃m = τ1/(1 + τ1) + σm/(1 + τ1) ≥ σm/(1 + τ1) and σi ≥ σ̃i ≥ σi/(1 + τ1),
i = 1, 2, . . . , m− 1, and

(c) ||p̃||H̃ ≤ √
1 + τ1[

√
3||p||H+τ1/(1+τ1)+τ1/(2

√
σ̄)+τ1(1−σ̄)/

√

σ̄(1 + τ1)].

PROOF. (a) Note that

Λ̃TS̃−2Λ̃ = ΛTS−2Λ + (
1

s̃2
m

− 1

s2
m

)αmα
T

m. (30)

Therefore,

det(Λ̃TS̃−2Λ̃) =det(ΛTS−2Λ) · det(I + (
1

s̃2
m

− 1

s2
m

)(ΛTS−2Λ)−1αmα
T

m)

=det(ΛTS−2Λ) · (1 + (
1

s̃2
m

− 1

s2
m

)αT

m(ΛTS−2Λ)−1αm)

=det(ΛTS−2Λ)(1 + τ1)

which yields

Ṽ (z) =
1

2
ln[det(Λ̃TS̃−2Λ̃)]

19

=
1

2
ln[det(ΛTS−2Λ)] +

1

2
ln(1 + τ1)

=V (z) +
1

2
ln(1 + τ1).

(b) From (30), we obtain

(Λ̃TS̃−2Λ̃)−1 =(ΛTS−2Λ)−1 −

(
1

s̃2
m

− 1

s2
m

)
(ΛTS−2Λ)−1αmα

T

m(ΛTS−2Λ)−1

1 + τ1
. (31)

(31) with σ̃i = (1/s2
i)α

T

i (Λ̃TS̃−2Λ̃)−1αi for i = 1, 2, . . . , m− 1 yields

σ̃i = σi −
1

s2
i

(
1

s̃2
m

− 1

s2
m

)
(αT

i (ΛTS−2Λ)−1αm)2

1 + τ1
,

which implies that σi ≥ σ̃i for i = 1, 2, . . . , m− 1. Then it follows from

1

s2
i

(
1

s̃2
m

− 1

s2
m

)(αT

i (ΛTS−2Λ)−1αm)2

≤ 1

s2
i

(αT

i (ΛTS−2Λ)−1αi)(
1

s̃2
m

− 1

s2
m

)(αT

m(ΛTS−2Λ)−1αm)

= σiτ1

that σ̃i ≥ σi − σiτ1/(1 + τ1) = σi/(1 + τ1) for i = 1, 2, . . . , m− 1. For i = m,
from (31) we have

(
1

s̃2
m

− 1

s2
m

)αT

m(Λ̃TS̃−2Λ̃)−1αm = τ1 −
τ 2
1

1 + τ1
=

τ1
1 + τ1

and

1

s2
m

αT

m(Λ̃TS̃−2Λ̃)−1αm = σm − τ1σm

1 + τ1
=

σm

1 + τ1
.

Adding the above two inequalities and using σ̃m = (1/s̃2
m)αT

m(Λ̃TS̃−2Λ̃)−1αm

we get that

σ̃m =
σm

1 + τ1
+

τ1
1 + τ1

. (32)

20

(c) As in the proof of [2] and using s̃i = si for i = 1, 2, . . . , m−1, and s̃m < sm,
we have

Q̃ =
m

∑

i=1

σ̃i

s̃2
i

αiα
T

i �
m

∑

i=1

σ̃i

s2
i

αiα
T

i � 1

1 + τ1

m
∑

i=1

σi

s2
i

αiα
T

i =
1

1 + τ1
Q.

So Q̃−1 � (1 + τ1)Q
−1, and then

||p̃||H̃ = ||g̃||H̃−1 ≤ ||g̃||Q̃−1 ≤
√

1 + τ1||g̃||Q−1 =
√

1 + τ1||Λ̃TS̃−1σ̃||Q−1.

Since

Λ̃TS̃−1σ̃=
m

∑

i=1

σ̃i

s̃i

αi

=
m

∑

i=1

σi

si

αi +
m−1
∑

i=1

σ̃i − σi

si

αi +
1

s̃m

(σ̃m − σm)αm + σm(
1

s̃m

− 1

sm

)αm,

we get with g = −ΛTS−1σ that

||p̃||H̃ ≤
√

1 + τ1(||g||Q−1 + ||
m−1
∑

i=1

σ̃i − σi

si
αi||Q−1

+|| 1

s̃m
(σ̃m − σm)αm||Q−1 + ||σm(

1

s̃m
− 1

sm
)αm||Q−1)

As in the proof of [2, Theorem 4.3], we have

||
m−1
∑

i=1

σ̃i − σi

si
αi||Q−1 ≤ τ1

1 + τ1
(33)

and

||g||Q−1 ≤
√

3||p||H. (34)

The fact that σmin ≥ σ̄ implies thatQ−1 = (ΛTS−2ΣΛ)−1 � (1/σ̄)(ΛTS−2Λ)−1.
Therefore,

|| 1

s̃m
(σ̃m − σm)αm||2Q−1 ≤ σ̄−1(σ̃m − σm)2 1

s̃2
m

αT

m(ΛTS−2Λ)−1αm.

21

Using σ̃m−σm = [τ1/(1 + τ1)](1−σm) which follows from (32), and (1/s̃2
m)αT

m(ΛTS−2Λ)−1αm =
(1 + τ1)σ̃m ≤ 1 + τ1 which follows from (31), we get

|| 1

s̃m
(σ̃m − σm)αm||2Q−1 ≤ τ 2

1

σ̄(1 + τ1)
(1 − σm)2 ≤ τ 2

1

σ̄(1 + τ1)
(1 − σ̄)2. (35)

Also

||σm(
1

s̃m
− 1

sm
)αm||2Q−1 ≤ σ̄−1σ2

m(
1

s̃m
− 1

sm
)2αT

m(ΛTS−2Λ)−1αm

= σ̄−1σm
1

s2
m

(
1

s̃m
− 1

sm
)2(αT

m(ΛTS−2Λ)−1αm)2.

Now using 1/s2
m ≤ 1/(sms̃m) ≤ (1/4)(1/s̃m + 1/sm)2, we get

||σm(
1

s̃2
m

− 1

s2
m

)αm||2Q−1 ≤ τ 2
1

4σ̄
. (36)

Combining (33), (34), (35) and (36), we have the result in part (c). 2

Lemma 9 Suppose that the point z has s = s(z) > 0, and ||p||H ≤ r1, µ||p||H ≤
r2, where r1, r2, and σ̄ are as in Lemma 7. Suppose that a constraint (αT

m, βm)
is translated to (αT

m, β̃m) with τ1 = .000017. In the new constraint system
[Λ̃, β̃], after one Newton step, i.e., ẑ = z + p̃, p̃ = p̃(z) = H̃−1g̃, we have

(a) ||p̂||Ĥ ≤ r1,
(b) µ̂||p̂||Ĥ ≤ r2, and
(c) Ṽ (ẑ) ≥ V (z) + 4V ′, where 4V ′ = .00000219.

PROOF. Since σmin ≥ σ̄, Lemma 8 imples that σ̃min ≥ σ̄/(1 + τ1) ≥
0.000399, and µ̃ = (2

√
σ̃min − σ̃min)−1/2 < 5.03. Therefore, Lemma 8 (c)

gives ||p̃||H̃ ≤ 0.00251, which gives µ̃||p̃||H̃ ≤ 0.0127. Then using Lemma 5 we
obtain

||p̂||Ĥ ≤ 21.6 · 5.03(.00251)2 < .0007

µ̂||p̂||Ĥ ≤ 21.6(5.03)2(.00251)2 < .0035.

To prove part (c) we use the subgradient inequality on V and we get

Ṽ (ẑ)≥ Ṽ (z) + g̃Tp̃

=V (z) +
1

2
ln(1 + τ1) − ||p̃||2H̃

22

≥V (z) +
1

2
ln(1.000017)− (0.00251)2

≥V (z) + 0.00000219. 2

Lemma 9 implies that the algorithm requires only one Newton step after a
constraint translation.

(iii) Deleting a constraint

Lemma 10 Suppose that a constraint (αT

m, βm) is deleted, where σm ≤ σ̄.
Then

(a) Ṽ (z) ≥ V (z) + (1/2) ln(1 − σ̄),
(b) σi ≤ σ̃i ≤ σi/(1 − σ̄), i = 1, 2, . . . , m− 1, and
(c) ||p̃||H̃ ≤ (1/

√
1 − σmin)[

√
3||p||H + 2σmin/(1 − σmin)].

PROOF. See [2, Lemma 5.1], [2, Lemma 5.2] and [2, Theorem 5.3]. 2

Lemma 11 Suppose that the point z has s = s(z) > 0, and that ||p||H ≤
r1, µ||p||H ≤ r2. Suppose that the constraint (αT

m, βm) is deleted, and let [Λ̃, β̃]
be the reduced constraint system. Then after one Newton step, i.e., ẑ = z +
p̃, p̃ = p̃(z) = H̃−1g̃, we have

(a) ||p̂||Ĥ ≤ r1,
(b) µ̂||p̂||Ĥ ≤ r2, and
(c) Ṽ (ẑ) ≥ V (z) −4V −, where 4V − = .000205.

PROOF. See [2, Theorem 6.2]. 2

Lemma 11 implies that the algorithm requires only one Newton step after a
constraint deletion.

Let mk be the number of the constraint in the system at iteration k. Then
the boundedness of Pk implies that mk ≥ n1 + 1. Assume that k1, k2 and k3

are the number of iterations of translation, addition and deletion, respectively.
Then k1 +k2 +k3 = k which with m0 = n1 +1 implies that k2 ≥ k3. Therefore
k1/2 + k2 ≥ k/2. So for all k,

V k(zk)≥V 0(z0) + k14V ′ + k24V + − k34V −

≥V 0(z0) + k14V ′ + k24V
≥V 0(z0) + (k1/2 + k2)24V ′

≥V 0(z0) + k4V ′ (37)

23

where 4V = 4V + −4V − > 0.

Also note that when a constraint is added, the condition σk
min ≥ σ̄ is always

satisfied. So mkσ̄ ≤ mkσ
k
min ≤ ∑mk

i=1 σ
k
i = n1 + 1 and mk ≤ (n1 + 1)/σ̄ + 1

for all k. Thus the number of constraints in the system is always bounded by
mσ := (n1 + 1)/σ̄ + 1.

According to Lemma 1 and Lemma 2 in §2, any nonobjective cuts are sat-
isfied by every element of SP . Let us represent the right-hand-side of the
objective cut by βtk . Then the objective cut has the form αTz ≥ βtk where
α := [−c̄T,−1]T. It is satisfied by every element of the set

Sβtk :=

















x

θ






∈ R

n1+1 :







x

θ






∈ SP ,−cTz − θ ≥ βtk











.

Note that in the algorithm the objective constraint may also be dropped after
its addition or translation. However, we have

Lemma 12 Suppose that the projected feasible set SP ∩P0 contains a ball of
radius r = O(1). Let N1 := 1

4V ′
((n1 + 1) ln(mσ/r) + r0 − V 0(z0)) = O(n1).

Then the objective constraint will not be dropped for all k ≥ N1.

PROOF. Suppose by contradiction that the objective constraint is dropped
for some k ≥ N1. Then we have SP ∩ P0 ⊂ Pk since there is no objective
constraint in the system. Thus Vol(SP ∩ P0) < Vol(Pk) which implies that

1<
Vol(Pk)

Vol(SP ∩ P0)

< (
mk

r
)n1+1(det(∇2φk(wk)))

−1/2

≤ (
mk

r
)n1+1 exp(−V k(wk))

≤ (
mk

r
)n1+1 exp(r0 − V k(zk))

≤ (
mk

r
)n1+1 exp(r0 − V 0(z0) − k∇V ′).

The fourth inequality is from Lemma 5 (c) which gives that V k(zk)−V k(wk) ≤
1.11||p||2H ≤ 1.11 · 0.00072 := r0, while the fifth inequality is from (37).
Therefore we get

k <
1

4V ′
((n1 + 1) ln(mσ/r) + r0 − V 0(z0)) = N1

24

a contradiction. 2

So when there is no more dropping of objective constraint, the objective upper
bound {−βtk} is a nonincreasing sequence.

Theorem 13 Suppose that the volume of the set Sε ∩ P0 contains a ball of
radius 2−L. Let V k

max := 0.7(n1 + 1)L + (n1 + 1) ln(mk) = O(n1L). Then the
upper bound −βtk satisfies that −βtk ≤ cTx∗ +θ∗ + ε whenever V k(zk) ≥ V k

max.

PROOF. Notice that if −βtk > cTx∗ + θ∗ + ε, then by the derivation of the
algorithm, Sε ∩ P0 ⊂ Pk. Therefore, Vol(Sε ∩ P0) < Vol(Pk) and 2−(n1+1)L <
mn1+1

k exp(−V k(wk)). Then V k(wk) ≤ (n1 + 1)L ln 2 + (n1 + 1) lnmk and

V k(zk)<V
k(wk) + r0

< (n1 + 1)L ln 2 + (n1 + 1) lnmk + r0

< 0.7(n1 + 1)L+ (n1 + 1) lnmk = V k
max

which contradicts the hypothesis V k(zk) ≥ V k
max. 2

Note that by Theorem 13 the condition V k(zk) ≥ V k
max can be used as a

stopping criterion for Algorithm Class 2. If this stopping criterion is satisfied
at iterate k, we have that cTx̂k + θ̂k ≤ −βtk ≤ cTx∗ + θ∗ + ε, where [x̂T

k , θ̂k]
T

is defined by (18, 19).

Theorem 14 With the stopping criterion given above, Algorithm 2 termi-
nates in at most Nvol := (1/∇V ′)(V k

max − V 0(z0)) = O(n1L) iterations.

PROOF. From (37) it follows that V k(zk) ≥ V 0(z0) + k∇V ′. So V 0(z0) +
k∇V ′ ≥ V k

max, i.e., k ≥ (1/∇V ′)(V k
max − V 0(z0)) = Nvol implies that V k(zk) ≥

V k
max. 2

The number of arithmetic operations per iteration is O(T + n3
1), and there-

fore the total number of arithmetic operations is O(Tn1L + n4
1L). Compared

to the complexity of Algorithm 1, Algorithm 2 has a fewer number of arith-
metic operations, especially fewer calls to the oracle. Also, using fast ma-
trix multiplication [13] the complexity of Algorithm 2 can be reduced to
O(Tn1L+n1M(n1)L) where M(n1) = n2.38

1 . A similar reduction is not possible
for Algorithm 1.

25

4 A class of cutting plane algorithms for L-shaped linear programs
based on analytic centers

Algorithm Classes 1 and 2 in §§2 and 3 respectively are based on the following
general scheme. At each iteration of the algorithm we have a member S of a
class of sets with nice properties containing a minimizer of the problem. We
then choose a test point, again with nice properties, and based on that test
point we modify the set S to obtain another member S̄ of the class of sets so
that S̄ contains the solution of the problem. We then repeat the procedure.
The choice of the class of sets, the test point, and the modification of S to
S̄ are all important for obtaining convergent algorithms, and analyzing their
complexities. In deriving Algorithm Class 1, the class of sets used is ellipsoids
and the test point used is the center of the ellipsoid. Given the ellipsoid S
containing a minimizer and information at the center of S, Algorithm Class 1
sets S̄ to be the minimum volume ellipsoid containing S cut off by a suitable
hyperplane. In deriving Algorithm Class 2, the class of polyhedral sets defined
by a finite number of linear inequalities is used. The test point used is the
volumetric center of such a polyhedral set. The modification of the polyhedral
set S to obtain the new polyhedral set S̄ involves the addition, deletion or
translation of linear inequalities.

The notion of analytic center [35] of a polyhedral set is used extensively in
the context of interior point algorithms. Atkinson and Vaidya [4] derived a
cutting plane algorithm for the convex feasibility problem using the class of
polyhedral sets and analytic centers of such sets as test points. Atkinson and
Vaidya [4] also provided a complexity analysis of their algorithm. One of the
nice features of this complexity analysis is that no assumption is made on
the finiteness of the number of linear inequalities defining the polyhedral set
maintained by the algorithm; in fact, this is proved as part of the analysis.
Similar algorithms and their complexity analyses presented prior to the work
of Atkinson and Vaidya [4] make that assumption.

In this section we show how the analytic center algorithm described in [4]
may be modified for problem (9). Let P be the bounded full-dimensional
polytope defined as in (20). The analytic center w of P is the unique point
that minimizes the logarithmic barrier F : int(P) → R defined by F (z) :=
−∑m

i=1 ln(αT

i z − βi) where αi := ΛTei, i = 1, 2, . . . , m. The gradient and
Hessian of F at z are given by

∇F (z) =−ΛTS(z)−1e and

∇2F (z) =ΛTS(z)−2Λ

where s(z) := Λz−β > 0 and S(z) := diag(s(z)). For z with s = s(z) > 0, let

26

σ(z) be defined as in (21). Define

µi(z) :=











1 1 ≤ i ≤ 2(n1 + 1)

(αT

i z − βi)/K(αi, βi) 2(n1 + 1) + 1 ≤ i ≤ m

where K(αi, βi) is as given in Algorithm Class 3 below for i = 1, 2, . . . , m.

4.1 The description of algorithms

Our algorithms begins with the box

P0 := {z ∈ R
n1+1 : −2L ≤ zi ≤ 2L, 1 ≤ i ≤ n1 + 1}

= {z ∈ R
n1+1 : Λ0z ≥ β0} (38)

where

Λ0 :=







In1+1

−In1+1





 , β0 := −2L







e

e





 (39)

containing a minimizer z∗ := [(x∗)T, θ∗]T of (9). The analytic center of P0 is
z0 := 0. Set K(αi, βi) := 2L, 1 ≤ i ≤ 2(n1 + 1).

At the beginning of iteration k(≥ 0) we have a point zk ∈ R
n1+1, and a poly-

hedral set Pk as in (24). We compute µk
max := max1≤i≤mk

µi(zk) and consider
the following two cases with the constants µ := 2, σ̄ := 0.04 and τ := 1/16.

Case 1. µk
max ≤ µ.

In this case a constraint is added.
We then consider the subcases as in §3 with αk defined as in each subcase.
We update Pk = [Λk, βk] by adding a cut αT

k z ≥ βk
mk+1 with βk

mk+1 defined

in (26), and let mk+1 := mk + 1, Λk+1 :=







Λk

αT

k





 , βk+1 :=







βk

βk
mk+1





.

Case 2. µk
max > µ.

Subcase 2.1. There is jk such that µjk
(zk) > µ and σjk

(zk) < σ̄.
The constraint (eT

jk
Λk)z ≥ βk

jk
is deleted. Let mk+1 := mk − 1, and Λk+1

and βk+1 be Λk and βk respectively with the jk-th row removed.

27

Subcase 2.2. For all i such that µi(zk) > µ, but σi(zk) ≥ σ̄, setK(αi, βi) :=
αizk − βi. Let mk+1 := mk, Λk+1 := Λk and βk+1 := βk.

When a constraint is added or deleted the analytic center shifts. A sequence
of Newton steps is performed beginning with the current iterate zk to obtain
the next iterate zk+1 ‘sufficiently close’ to the analytic center wk+1 of the new
polyhedral set. The ‘closeness’ of zk+1 to wk+1 is measured in terms of ψ(z) :=
∇F (z)(∇2F (z))−1∇F (z) with ψ(zk+1) ≤ 2ρ2 for some small ρ > 0. It is proved
in [4, §6.2] that O(1) Newton steps suffice to find such an approximation zk+1

beginning with zk.

Our description above leads to the following class of analytic center cutting
plane algorithms for (9).

Algorithm Class 3.

Initialization:

choose L > 0 so that z∗ ∈ int P0 where P0 is as in (38),
µ := 2, σ̄ := 0.04, τ := 1/16;
z0 := 0, m0 := 2(n1 + 1), K(αi, βi) := 2L, i = 1, 2, . . . , m0.

Main Step:

begin

for k = 0, 1, . . . do
µk

max := max1≤i≤mk
µi(zk);

if µk
max ≤ µ then
z̄k := [x̄T

k , θk]
T := Pzk;

if x̄k /∈ S2 then
choose jk such that eT

jk
x̄k < 0;

ējk
:= PAejk

;
αk := [ēT

jk
, 0]T;

else
call the oracle;
if oracle decides x̄k /∈ S3 then

D̄k := PADk;
αk := [D̄T

k , 0]T;
else

if the oracle decides Qx̄k > θ̄k then
Ēk := PAEk;
αk := [ĒT

k , 1]T;
else

αk := [−c̄T,−1]T;

28

end if;
end if;

end if;
define Λk+1 and βk+1 as in Case 1 above to
add the cut αT

k z ≥ βk
mk+1 and let mk+1 := mk + 1;

take O(1) Newton steps to move to the new approximate
center zk+1;
Set K(αk, β

k
mk+1) := αkzk+1 + βk

mk+1;
else

if for some jk, µjk
(zk) > µ and σjk

(zk) < σ̄ then
mk+1 := mk − 1;
define Λk+1 and βk+1 as in Subcase 2.1 above to delete the
jk-th cut;
take O(1) Newton steps to move to the new approximate
center zk+1;

else
for all i such that µi(zk) > µ, but σi(zk) ≥ σ̄, set
K(αi, βi) := αT

i zk − βi, mk+1 := mk, Λk+1 := Λk and
βk+1 := βk;

end if;
end for;

end if;
end

Define the following stopping conditions for Algorithm 3 which are justified
by Theorem 15 below.
Stopping Condition 1. mk ≥ ν(n1 + 1)L.

Stopping Condition 2. min1≤i≤mk
{αT

i zk−βi} ≤ 2−(L+1)/(ν(n1+1)L), where
ν > 0 is a suitable constant. Following [4, Theorem 14], ν = 2700 would suffice.

In addition define the sequence {Ẑk} by

Ẑk+1 :=



























−βk
mk+1 if an objective cut αT

k z ≥ βk
mk+1

with −βk
mk+1 < Ẑk is added

Ẑk otherwise,

(40)

where Ẑ0 := ∞ for k = 0, 1,

The following result follows from [4] and shows that one of the two stopping
conditions must be met in O(n1L

2) iterations.

Theorem 15 Suppose that the set Sε∩P0 contains a ball of radius 2−L where
Sε is defined by (17). Suppose further that we terminate Algorithm 3 at itera-

29

tion k if Stopping Condition 1 or 2 is satisfied. Then Algorithm 3 terminates
with Stopping Condition 1 in O(n1L) iterations or with Stopping Condition 2
in O(n1L

2) iterations. The termination of Algorithm 3 at iteration k by either
stopping condition implies that the upper bound Ẑk satisfies Ẑk ≤ cTx∗+θ∗+ε,
which further implies that [x̂T

k , θ̂k]
T ∈ Sε where [x̂T

k , θ̂k]
T is defined by (40) and

(19). The complexity of the algorithm is O(Tn1L
2 + n4

1L
3) arithmetic opera-

tions where T is the cost of a call to the oracle in arithmetic operations.

PROOF. The conclusion on the number of iterations follows from [4, Theo-
rem 14] and [4, Theorem 15]. Since the number of arithmetic operations per
iteration is O(T+n3

1) for the calls to the oracle and for the O(1) Newton steps,
the conclusion on the overall complexity of Algorithm 3 follows. 2

As in the case of Algorithm 2 using fast multiplications the complexity of
Algorithm 3 can be reduced to O(Tn1L

2 + n1M(n1)L
3) where M(n1) = n2.38

1 .

5 The work of the oracle

In this section we indicate how the work of the oracle which Algorithms 1, 2
and 3 call may be performed.

Recall from the discussion at the end of §1 that the oracle is always presented
with z̄ := [x̄T, θ̄]T with x̄ ∈ S1∩S2. The oracle is expected to do the following.

(a) Decide whether x̄ ∈ S3 := {x ∈ R
n1 : (∃y ∈ R

n2 : My = h− Tx, y ≥ 0)}
or not, returning D ∈ R

n1 and d ∈ R such that DTx ≥ d for all x ∈ S3 and
DTx̄ < d if x̄ 6∈ S3.

(b) If x̄ ∈ S3 decide whether Q(x̄) := miny∈Rn2{qTy : My = h − T x̄, y ≥
0} ≤ θ̄ or not, returning E ∈ R

n1 and e ∈ R such that ETx + θ ≥ e for
all x ∈ S1 ∩ S2 ∩ S3 and all θ with Q(x) ≤ θ, and ETx̄ + θ̄ < e, if indeed
Q(x̄) ≥ θ̄.

(c) In the case of Algorithm 1, if deep cuts are desired, then when x̄ ∈ S1 ∩
S2 ∩ S3 and Q(x̄) ≤ θ̄, return θ′ ≤ θ̄ where θ′ := qTy with y satisfying
My = h− T x̄ and y ≥ 0.

Now define the “phase-I” problem

minimize eTv+ + eTv−
subject to My + v+ − v− = h− T x̄

y, v+, v−≥ 0 (41)

30

associated with the lp

minimize qTy

subject to My= h− T x̄

y≥ 0 (42)

whose optimal value defines Q. The duals of (41) and (42) respectively are

maximize (h− T x̄)Tw

subject to MTw≤ 0

−e ≤ w≤ e (43)

and

maximize (h− T x̄)Tw

subject to MTw≤ q (44)

respectively.

It is clear that any feasible solution w for (43) with

(h− T x̄)Tw > 0 (45)

can be used to generate the D ∈ R
n1, d ∈ R in (a) of the oracle work with

D := TTw and d := hTw since for such D and d, DTx ≥ d for all x ∈ S3 and
DTx̄ < d.

Any feasible solution w to (44) which satisfies

(h− T x̄)Tw > θ̄ (46)

can be used to generate E and e in (b) of the oracle work with E := T Tw and
e := hTw which separates the current iterate z̄ and is satisfied by all z feasible
to (9).

Also any feasible solution y to (42) which satisfies

qTy ≤ θ̄ (47)

gives θ′ of (c) of the oracle work with θ′ := qTy.

31

Note that by the above analysis the oracle work does not necessarily involve
solution of lp’s in contrast to the case of simplex-based algorithms such as the
Van Slyke and Wets algorithm [40].

According to the above analysis one easy way to perform the oracle work is
to solve feasibility problems as follows. Attempt to find a feasible solution to
the system

MTw≤ 0

−e ≤ w ≤ e (48)

(h− T x̄)Tw ≥ 0.

If a feasible solution w to (48) with (h−T x̄)Tw > 0 is found, then we conclude
that x̄ 6∈ S3, set D := TTw and d := hTw, and terminate the oracle work.
Otherwise, x̄ ∈ S3, and we attempt to find a feasible solution to the system

MTw≤ q (49)

(h− T x̄)Tw≥ θ̄.

If a feasible solution w to (49) with (h−T x̄)Tw > θ̄ is found, then we conclude
that Q(x̄) > θ̄, set E := TTw and e := hTw and terminate the oracle work.
Otherwise, Q(x̄) ≤ θ̄ and we can simply use θ′ := θ̄. (In the case of Algorithm
1 we would of course have a central cut in Subcase 2.2.2.).

We can use the ellipsoid algorithm on the two feasibility problems (48) and
(49). It is reasonable to make the following assumption.

(A3) L in Algorithms 1, 2 and 3 is such that the set of all w satisfying (48)
is contained in a ball of radius 2L centered at origin, and contains a ball
of radius 2−L with x̄ := x̄k for all x̄k generated by Algorithm 1, 2 or 3.
Moreover, L is such that the set of all w satisfying (49) is contained in
a ball of radius 2L centered at the origin, and if that set is nonempty it
contains a ball of radius 2−L with x̄ := x̄k for all x̄k generated by Algorithm
1, 2 or 3.

If (A3) holds, then the oracle work performed by using the ellipsoid algorithm
on the feasibility problems (48) and (49) would have complexity O((n2m

3
2 +

m4
2)L) in terms of arithmetic operations. So T = O((n2m

3
2 +m4

2)L).

We can also use the volumetric center algorithm [2,37] on the feasibility prob-
lems (48) and (49). Then under Assumption (A3) T = O(m3.38

2 L).

Alternatively, we can use the analytic center algorithm of [4]. Then under the
analog of Assumption (A3) T = O(m3.38

2 L3).

32

It is possible to perform the oracle work using linear programming algorithms,
such as the ellipsoid algorithm [12], the algorithm of Vaidya [39] or the algo-
rithm of Renegar [34]. Consider the use of the algorithm of Vaidya [39]. Apply
the algorithm on (43) and at each iterate w check whether (45) is satisfied. If
so, the required D and d are given by D := T Tw and d := hTw. Otherwise,
the algorithm of Vaidya [39] terminates without satisfying (45). Then apply
the algorithm on (44) and at each iterate w check whether (46) is satisfied. If
so, the required E and e are given by E := T Tw and e := hTw. Otherwise, the
algorithm will terminate with Q(x̄) and we can use θ′ := Q(x̄). It is reasonable
to make the following assumption.

(A4) L in Algorithm 1, 2 and 3 is such that the feasible sets of (43) and (44)
are contained in a ball of radius 2L centered at origin and that each of these
sets contains a ball of radius 2−L.

Under Assumption (A4), the analysis in [39] gives that the oracle work T =
O((n2 +m2)m

2
2 + (n2 +m2)

1.5m2)L) in terms of arithmetic operations.

Similarly, if the ellipsoid algorithm is used, under (A4), T = ((n2m
3
2 +m4

2)L).

Another interesting way to perform the oracle work is to use the primal-
dual path following algorithm as follows. Consider the use of the algorithm of
Monteiro and Adler [32]. Apply the algorithm on (41) and its dual (43), and
at each iterate (y, w) check whether (45) is satisfied. If so, the required D and
d are given by D := T Tw and d := hTw. Otherwise, the algorithm terminates
without satisfying (45). Then apply the algorithm on (42) and its dual (44),
and at each iterate (y, w) check whether (46) or (47) is satisfied. If (46) is
satisfied, the required E and e are given by E := T Tw and e := hTw. If (47)
is satisfied, the required θ′ is given by θ′ := qTy. The the analysis in [32] gives
that the oracle work T = O(m2n

2
2L) in terms of arithmetic operations.

6 Application to stochastic linear programs

In this section we consider the general case of problem (1,2,3) with K > 1. As
in the case of K := 1, we do not lose generality by assuming that b = 0. We
will further assume that A has full row rank.

Define

Sl
3 := {x ∈ R

n1 : (∃y ∈ R
n2 : M ly = hl − T lx, y ≥ 0)} for l = 1, 2, . . . , K

and S3 := ∩K
l=1S

l
3. Then problem (1,2,3) is equivalent to

33

minimize Z(x) := cTx+ θ

subject to Q(x) ≤ θ

x ∈ S := S1 ∩ S2 ∩ S3 (50)

which is symbolically the same as (9) except that Q is defined as in (1,2,3).

We assume that (50) has a minimizer [x∗T, θ∗]T.

The similarity of problems (50) and (9) suggests that Algorithm 1, 2 and 3
we stated for (9) could be modified for (50). This indeed is the case. We now
state the analogs of Algorithms 1, 2 and 3 for (50). In the analog of Algorithm
1 we assume that oracle work is performed using the ellipsoid algorithm for
appropriate lp’s in a manner analogous to that described in §5 for problem
(9). In the other two algorithms we assume that oracle work is performed
using the linear programming algorithm of Vaidya [39] analogous to the way
outlined in §5 for problem (9). Of course other ways of performing the oracle
work can also be used to obtain different variants of algorithms we present
below. Following the statement of each algorithm we also present a theorem
on its complexity. Proofs of these theorems follow from the results in §§2, 3
and 4 and our discussion of the work of the oracle in §5.

In the algorithms below we need to refer to the lp’s

maximize (hl − T lx̄)Tw

subject to (M l)Tw≤ 0

−e ≤ w≤ e, (51)

and

maximize (hl − T lx̄)Tw

subject to (M l)Tw≤ ql. (52)

Algorithm 4 (Ellipsoid algorithm for problem (50)).

Initialization:

choose x0 ∈ R
n1, θ0 ∈ R and L > 0 such that with z0 := [xT

0 , θ0]
T and

B0 := 22LI ∈ R
(n1+1)×(n1+1),

z∗ ∈ int(E0 := {z ∈ R
n1+1 : (z − z0)

TB−1
0 (z − z0) ≤ 1}).

Main Step:

34

begin

for k = 0, 1, . . . do
z̄k := [x̄T

k , θk]
T := Pzk;

if x̄k /∈ S2 then
choose jk such that eT

jk
x̄k < 0;

ējk
:= PAejk

;
αk := [−ēT

jk
, 0]T; ck := 0;

else
begin (the oracle work);

for l = 1, 2, . . . , K in parallel do
apply ellipsoid algorithm on (51) to generate {wl

jl
};

if wl
jl

is feasible for (51) and (hl − T lx̄k)
Twl

jl
> 0

for some l, jl then
Dk := (T l)Twl

jl
, dk := (hl)Twl

jl
;

D̄k := PADk;
αk := [−D̄T

k , 0]T; ck := −dk;
exit parallel do;

end if
end parallel do
for l = 1, 2, . . . , K in parallel do

apply ellipsoid algorithm on (52) to generate {wl
jl
};

if wl
jl

is feasible for (52) and
∑K

l=1 p
l(hl − T lx̄k)

Twl
jl
> θ̄k

for any set of indices jl and l = 1, 2, . . .K then
Ek :=

∑K
l=1 p

l(T l)Twl
jl
; ek :=

∑K
l=1 p

l(hl)Twl
jl
;

Ēk := PAEk;
αk := [−ĒT

k ,−1]T; ck := −ek;
exit parallel do;

end if
wl

∗ := terminating member of {wl
jl
};

end parallel do
θ′k :=

∑K
l=1 p

l(hl − TTx̄k)
Twl

∗;
Zk := cTx̄k + θ′;
αk := [c̄T, 1]T; ck := Zk;

end (the oracle work);
end if;
update zk and Bk to zk+1 and Bk+1 respectively using (14,15);

end for;
end

Theorem 16 Suppose that the set Sε ∩ E0 contains a ball of radius 2−L and
that Assumption (A4) holds with (43) and (44) replaced by (51) and (52) for
l = 1, 2, . . . , K. Let N := 4(n1 + 1)(n1 + 2)L ln 2. Let the sequence {[x̄T

k , θk]
T}

be generated by Algorithm 4 and let the sequence {[x̂T

k , θ̂k]
T} be defined by

(18,19). Then, [x̂T

k , θ̂k]
T ∈ Sε for all k ≥ N . The complexity of the algorithm

35

is O(Tn2
1L + n4

1L) arithmetic operations where T := O((n2m
3
2 +m4

2)L).

We mention in passing that it is possible to analyze Algorithm 4 under weaker
hypotheses using techniques in [18].

Algorithm 5 (Volumetric center algorithm for problem (50)).

Initialization:

choose L > 0 so that z∗ ∈ int P0 where P0 is as in (22),
σ̄ ∈ (0, 1), τ > 0, τ1 > 0;
define z0 by (23).

Main Step:

begin

for k = 0, 1, . . . do
σk

min := σmin(zk);
if σk

min ≥ σ̄ then
z̄k := [x̄T

k , θk]
T := Pzk;

if x̄k /∈ S2 then
choose jk such that eT

jk
x̄k < 0;

ējk
:= PAejk

;
αk := [ēT

jk
, 0]T;

else
begin (the oracle work);

for l = 1, 2, . . . , K in parallel do
apply Vaidya’s algorithm [39] on (51) to generate {wl

jl
};

if wl
jl

is feasible for (51) and (hl − T lx̄k)
Twl

jl
> 0

for some l, jl then
Dk := (T l)Twl

jl
;

D̄k := PADk;
αk := [D̄T

k , 0]T;
exit parallel do;

end if
end parallel do;
for l = 1, 2, . . . , K in parallel do

apply Vaidya’s algorithm [39] on (52) to generate {wl
jl
};

if wl
jl

is feasible for (52) and
∑K

l=1 p
l(hl − T lx̄k)

Twl
jl
> θ̄k

for any set of indices jl and l = 1, 2, . . . , K then
Ek :=

∑K
l=1 p

l(T l)Twl
jl
;

Ēk := PAEk;
αk := [ĒT

k , 1]T;
exit parallel do;

36

end if
end parallel do;
αk := [−c̄T,−1]T;

end (the oracle work);
end if;
define Λk+1 and βk+1 as in Case 1 above to
add the cut (25) and let mk+1 := mk + 1
or translate the cut (27) and let mk+1 := mk;

else
mk+1 := mk − 1;
define Λk+1 and βk+1 as in Case 2 above to
delete the cut (28);

end if;
beginning with zk, take a sequence of pure Newton steps to obtain
zk+1 ‘close’ to new volumetric center;

end for;
end

Theorem 17 Suppose that the set Sε ∩ P0 contains a ball of radius 2−L and
that Assumption (A4) holds with (43) and (44) replaced by (51) and (52)
for l = 1, 2, . . . , K. Let the sequence {[x̄T

k , θk]
T} be generated by Algorithm

5 and let the sequence {[x̂T

k , θ̂k]
T} be defined by (18,19). Then, [x̂T

k , θ̂k]
T ∈

Sε for all k ≥ Nvol = O(n1L) where Nvol is defined in Theorem 14. The
complexity of the algorithm is O(Tn1L + n4

1L) arithmetic operations where
T = O(((n2 + m2)m

2
2 + (n2 +m2)

1.5m2)K). If fast matrix multiplication [13]
is used the complexity of the algorithm is O(Tn1L + n1M(n1)L) arithmetic
operations where M(n1) = n2.38

1 .

Algorithm 6 (Analytic center algorithm for problem (50)).

Initialization:

choose L > 0 so that z∗ ∈ int P0 where P0 is as in (38),
µ := 2, σ̄ := 0.04, τ := 1/16;
z0 := 0, m0 := 2(n1 + 1), K(αi, βi) := 2L, i = 1, 2, . . . , m0.

Main Step:

begin

for k = 0, 1, . . . do
µk

max := max1≤i≤mk
µi(zk);

if µk
max ≤ µ then
z̄k := [x̄T

k , θk]
T := Pzk;

if x̄k /∈ S2 then

37

choose jk such that eT

jk
x̄k < 0;

ējk
:= PAejk

;
αk := [ēT

jk
, 0]T;

else
begin (the oracle work)

for l = 1, 2, . . . , K in parallel do
apply Vaidya’s algorithm [39] on (51) to generate {wl

jl
};

if wl
jl

is feasible for (51)and (hl − T lx̄k)
Twl

jl
> 0

for some l, jl then
Dk := (T l)Twl

jl
;

D̄k := PADk;
αk := [D̄T

k , 0]T;
exit parallel do;

end if
end parallel do;
for l = 1, 2, . . . , K in parallel do

apply Vaidya’s algorithm [39] on (52) to generate {wl
jl
};

if wl
jl

is feasible for (52) and
∑K

l=1 p
l(hl − T lx̄k)

Twl
jl
> θ̄k

for any set of indices jl and l = 1, 2, . . . , K then
Ek :=

∑K
l=1 p

l(T l)Twl
jl
;

Ēk := PAEk;
αk := [ĒT

k , 1]T;
exit parallel do;

end if
end parallel do;
αk := [−c̄T,−1]T;

end(the oracle work);
end if;
define Λk+1 and βk+1 as in Case 1 above to
add the cut αT

k z ≥ βk
mk+1 and let mk+1 := mk + 1;

take O(1) Newton steps to move to the new approximate
center zk+1;
Set K(αk, β

k
mk+1) := αkzk+1 + βk

mk+1;
else

if for some jk, µjk
(zk) > µ and σjk

(zk) < σ̄ then
mk+1 := mk − 1;
define Λk+1 and βk+1 as in Subcase 2.1 above to delete the
jk-th cut;
take O(1) Newton steps to move to the new approximate
center zk+1;

else
for all i such that µi(zk) > µ, but σi(zk) ≥ σ̄, set
K(αi, βi) := αT

i zk − βi, mk+1 := mk, Λk+1 := Λk

and βk+1 := βk;

38

end if
end if

end for;
end

Theorem 18 Suppose that the set Sε ∩ P0 contains a ball of radius 2−L and
that Assumption (A4) holds with (43) and (44) replaced by (51) and (52) for
l = 1, 2, . . . , K. Suppose further that we terminate Algorithm 6 at iteration k
if Stopping Condition 1 or 2 defined in §4 for Algorithm 3 is satisfied. Then
Algorithm 6 terminates with Stopping Condition 1 in O(n1L) iterations or with
Stopping Condition 2 in O(n1L

2) iterations. The termination of Algorithm 6 at
iteration k by either stopping condition implies that the upper bound Ẑk defined
by (40) satisfies Ẑk ≤ cTx∗ + θ∗ + ε, which further implies that [x̂T

k , θ̂k]
T ∈ Sε

where [x̂T

k , θ̂k]
T is defined by (40) and (19). The complexity of the algorithm is

O(Tn1L
2 + n4

1L
3) arithmetic operations where T = O(((n2 + m2)m

2
2 + (n2 +

m2)
1.5m2)KL). If fast matrix multiplications are used the complexity of the

algorithm is O(Tn1L
2 + n3.38

1 L3).

We have included parallel do loops in the statements of Algorithms 4, 5 and 6
to indicate the potential for using parallel processors in the implementation of
these algorithms. In this paper we have done this in the most obvious manner,
and note that in particular, the important case in which K is bigger than the
available number of processors needs more careful consideration.

We conclude the paper by restating the complexity bounds obtained above
for Algorithms 4, 5 and 6 for two-stage stochastic programs together with the
complexity bound obtained by Birge and Qi [11] for their algorithm for easy
comparison. In particular, note that Algorithms 4, 5 and 6 have complexities
that are linear in the number of realizations K.

Complexity of algorithm of Birge and Qi [11]:
O((n0.5n2

2 + nmax{n1, n2} + n3
1)nL), n := n1 +Kn2.

Complexity of Algorithm 4 (ellipsoid):
O(Tn2

1L + n4
1L), T := O(((n2 +m2)m

2
2 + (n2 +m2)

1.5m2)K)

Complexity of Algorithm 5 (volumetric center):
O(Tn1L + n3.38

1 L), T := O(((n2 +m2)m
2
2 + (n2 +m2)

1.5m2)K)

Complexity of Algorithm 6 (analytic center):
O(Tn1L

2 + n3.38
1 L3), T := O(((n2 +m2)m

2
2 + (n2 +m2)

1.5m2)K)

39

References

[1] K. M. Anstreicher, Large step volumetric potential reduction algorithms for
linear programming, Technical Report, Department of Management Sciences,
University of Iowa (Iowa City, IA, 1994).

[2] K. M. Anstreicher, On Vaidya’s volumetric cutting plane method for convex
programming, Department of Management Sciences, University of Iowa (Iowa
City, IA 1994).

[3] K. A. Ariyawansa and D. D. Hudson, Performance of a benchmark
implementation of the Van Slyke and Wets algorithm for stochastic two-
stage stochastic programs on the Sequent/Balance, Concurrency: Practice and
Experience 3 (1991) 109–128.

[4] D. S. Atkinson and P. M. Vaidya, A cutting plane algorithm for convex
programming that uses analytic centers, Mathematical Programming 69 (1995)
1–43.

[5] O. Bahn, O. DU Merle, J.-L. Goffin and J.-P. Vial, Experimental behavior of
an interior point cutting plane algorithm for convex programming, Discrete
Applied Mathematics 49 (1994) 3–23.

[6] O. Bahn, O. DU Merle, J.-L. Goffin and J.-P. Vial, A cutting plane method
from analytic centers for stochastic programming, Mathematical Programming
69 (1995) 45–73.

[7] J. F. Benders, Partitioning procedures for solving mixed-variables programming
problems, Numerische Mathematik 4 (1962) 238–252.

[8] D. Bertsimas and J. B. Orlin, A technique for speeding up the solution of the
Lagrangean dual, Mathematical Programming 63 (1994) 23–45.

[9] J. R. Birge, An L-shaped method computer code for multi-stage stochastic
linear programs, in: Y. Ermoliev and R. J.-B. Wets, eds., Numerical Techniques
for Stochastic Optimization (Springer-Verlag, Berlin, 1988) 255–266.

[10] J. R. Birge and D. F. Holmes, Efficient solution of two-stage stochastic
linear programs using interior point methods, Computational Optimization and
Applications 1 (1992) 245–276.

[11] J. R. Birge and L. Qi, Computing block-angular Karmarkar projections with
applications to stochastic programming, Management Science 34 (1988) 1472–
1479.

[12] R. G. Bland, D. Goldfarb and M. J. Todd, The ellipsoid method: a survey,
Operations Research 29 (1981) 1039–1091.

[13] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic
progressions, Preceedings of the 19th Annual ACM Symposium on Theory of
Computing (1987) 1–6.

40

[14] J. Czyzyk, R. Fourer and S. Mehrotra, A study of the augmented system and
column-splitting approaches for solving two-stage stochastic linear programs by
interior point methods, ORSA Journal on Computing (1995) 474–490.

[15] G. B. Dantzig and P. Wolfe, The decomposition algorithm for linear
programming, Econometrica 29 (1961) 425–453.

[16] G. B. Dantzig and A. Madansky, On the solution of two-stage linear
programs under uncertainty, in: Proceedings of Fourth Berkeley Symposium on
Mathematical Statistics and Probability, Vol. 1 (University of California Press,
Berkeley, CA, 1961) 165–176.

[17] G. B. Dantzig and Y. Ye, A build-up interior method for linear
programming: Affine scaling form, Technical Report SOL 90-4, Systems
Optimization Laboratory, Department of Operations Research, Stanford
University, (Stanford, CA, 1990).

[18] J. B. G. Frenk, J. Gromicho and S. Zhang, A deep cut ellipsoid algorithm for
convex programming: Theory and applications, Mathematical Programming 63

(1994) 83–108.

[19] D. den Hertog, C. Roos and T. Terlaky, A large-step analytic center method
for a class of smooth convex programming problems, SIAM J. Optim. 2 (1992)
55–70.

[20] D. den Hertog, C. Roos and T. Terlaky, A build-up variant of the logarithmic
barrier method for LP, OR Letters 12 (1992) 181–186.

[21] D. den Hertog, C. Roos and T. Terlaky, A complexity reduction for the long-
step path following algorithm for linear programming, vvvSIAM J. Optim. 2

(1992) 71–87.

[22] H. I. Gassmann, MSLiP: a computer code for the multistage stochastic linear
programming problem, Mathematical Programming 47 (1990) 407–423.

[23] J.-L. Goffin and J.-P. Vial, Cutting planes and column generation techniques
with the projective algorithm, SIAM J. Optim. 1 (1990) 409-429.

[24] J.-L. Goffin, A, Haurie and J.-P. Vial, Decomposition and nondifferentiable
optimization with the projective algorithm, Managment Science 38 (1992) 284–
302.

[25] M. Grötschel, L. Lovasz and A. Schrijver, Geometric Algorithms and
Combinatorial Optimization (Second Corrected Edition) (Springer-Verlag,
Berlin, 1991).

[26] E. Jessup, D. Yang and S. A. Zenios, Parallel factorization of structured
matrices arising in stochastic programming, Technical Report 93-02,
Department of Public and Business Administration, University of Cyprus
(Nicosia, Cyprus, 1993).

[27] P. L. Jiang, Polynomial cutting plane algorithms for stochastic programming
and related problems, Ph. D. dissertation, Department of Pure and Applied
Mathematics, Washington State University (Pullman, Washington, 1997).

41

[28] P. Kall, Computational methods for solving two-stage stochastic linear
programming problems, Z. Angew. Math. Phys. 30 (1979) 261–271.

[29] L. Khachiyan, A polynomial algorithm in linear programming, Doklady
Akademiia Nauk SSSR 244 (1979) 1093–1096 [Translated in Soviet
Mathematics Doklady 20 (1979) 191–194.]

[30] I. J. Lustig, J. M. Mulvey and T. J. Carpenter, Formulating two-stage stochastic
programs for interior point methods, Operations Research 39 (1991) 757–770.

[31] J. E. Mitchell and M. J. Todd, Solving combinatorial optimization problems
using Karmarkar’s algorithm, Mathematical Programming 56 (1992) 245–284.

[32] R. C. Monteiro and I. Adler, Interior path-following primal-dual algorithms,
Part I: Linear programming, Mathematical Programming 44 (1989) 27–41.

[33] Y. Nesterov, Complexity estimates of some cutting plane methods based on the
analytic barrier, Mathematical Programming 69 (1995) 149–176.

[34] J. Renegar, A polynomial-time algorithm based on Newton method for linear
programming, Mathematics Programming 40 (1988) 59–93.

[35] G. Sonnevend, An analytical centre for polyhedrons and new classes of global
algorithms for linear (smooth, convex) programming, in: Lecture Notes Control
Inform. Sci 84 (Springer-Verlag, New York, NY, 1985) 866–876.

[36] B. Strazicky, Some results concerning an algorithm for the discrete recourse
problem, in: M. A. H. Dempster, ed., Stochastic Programming (Academic Press,
London, 1980) 263–274.

[37] P. M. Vaidya, A new algorithm for minimizing convex functions over convex
sets, Technical Report, AT&T Bell Laboratories, (Murray Hill, NJ, 1989).

[38] P. M. Vaidya, A new algorithm for minimizing convex functions over convex
sets, in: Annual Symposium on Foundations of Computer Science, Research
Triangle Park, NC, 1989 (IEEE Computer Society Press, Los Alamitos, CA
1990) 338–343.

[39] P. M. Vaidya, An algorithm for linear programming which requires O(((m +
n)n2 + (m + n)1.5n)L) arithmetic operations, Mathematical Programming 47

(1990) 175–201.

[40] R. M. Van Slyke and R. J.-B. Wets, L-shaped linear programs with applications
to optimal control and stochastic programming, SIAM J. Appl. Math. 17 (1969)
638–663.

[41] R. J.-B. Wets, Stochastic programming: solution techniques and approximation
schemes, in: A. Bachem, M. Grötschel and B. Korte, eds., Mathematical
Programming—The State of the Art, Bonn 1982 (Springer-Verlag, Berlin, 1983)
566–603.

[42] Y. Ye, The “build-down” scheme for linear programming, Mathematical
Programming 46 (1990) 61–72.

42

[43] Y. Ye, A potential reduction algorithm allowing column generation, SIAM J.
Optim. 2 (1992) 7–20.

43

