Lecture Highlights 2/1/02: Speciation and tree of life

Outline

• What is a species?
• Mechanisms of speciation
• Tempo of speciation
• Guide to tree of life (phylogeny)
 – AIDS as an example

What is a species?

• “species” – Latin for “kind” or “appearance”
• originally grouped by morphology (form)
 – the way they looked…
• BUT, many species look very similar…

• Biological species concept (Mayr 1927)
 – “groups of interbreeding natural populations that are reproductively isolated from other such groups”
 – KEY- reproductive isolation
• Genetic analysis

Reproductive barriers

• “pre-zygotic” (before egg)
 – temporal isolation (e.g., salmon runs)
 – habitat isolation (no contact)
 – behavioral isolation (e.g., courtship)
 – mechanical isolation (parts don’t fit)

• “post-zygotic”
 – hybrid inviability
 – hybrid sterility (e.g., mule)

Allopatric speciation – “other country”

• Process:
 1) Barrier blocks dispersal
 ✓ River, volcano, road, Isthmus of Panama
 2) Local environments different
 3) Through time –adapt to local environment (evolution)
 4) If reconnected, will not interbreed

Sympatric speciation

• “together”
• Not that common in animals, but plants
 – E.g., errors in cell division cause extra sets of chromosomes
• 2 examples (in process):
 – Coho salmon:
 • Reproductive isolation – spawning different times in same streams/ rivers
 • Different environments: seasons
 – Gall flies:
 • Reproductive isolation (“early” vs. “tall” galls)
 • Different environments (predators)

How fast is speciation?
 gradualist - slow, gradual change
 vs.
 punctuated equilibrium - Long periods of stasis followed by rapid speciation

• Darwin generally thought gradualist
• Fossil record shows:
 – Mass extinctions followed by rapid (in geological time) radiations
 – New species often appear more abruptly than predict under gradualist

Phylogeny – “tree of life”
 What does it show? (hint: relationship between morphology and time)

 Why is it useful? (Think about HIV phylogeny…..)

The five kingdoms
• Monera (Prokaryotes)

Eukaryotes
• Protista
 – mostly unicellular
• Plantae
• Fungi
• Animalia