White Paper Contents

1. Background
 1.1. Storage Technologies
 1.2. Pumped Hydro: A Widely Used Technology
 1.3. Compressed Air: Traditional and Advanced Technologies
 1.4. Size of the Storage Market and the Need for Flexible Capacity
 1.5. Limitations of Existing Models
 1.6. Purpose of the White Paper

2. The NRStor Modeling System
 2.1. Design of the System
 2.2. Model Views and Navigation
 2.3. Model Diagrams
 2.4. Assumptions for the Base Case Simulation
 2.5. Long-Term Results from the Base Case Simulation
 2.6. The Cost of Power
 2.7. CO2 Emissions
 2.8. The Social Cost of CO2 Emissions
 2.9. The Base Case as a Benchmark

3. Using Storage to Level Load and Displace New Construction
 3.1. Load Leveling Delivers Surprisingly Little Value
 3.2. Displacing Combustion Turbines Delivers Significant Value
 3.3. General Conclusion

4. Using Storage to Provide Wind Integration Services
 4.1. Wind Generation in Ontario
 4.2. Variability, Uncertainty and Reserves
 4.3. Using GCAES to Provide the Reserves
 4.4. Using Gas-Fueled Plants to Provide the Reserves
 4.5. The Wind Integration Value Curve
 4.6. The Value of Wind Integration

5. The Value of Fuel Free, Compressed Air Energy Storage
 5.1. The Value of a Multi-Use Facility
 5.2. The Value of a Smaller Facility
 5.3. The Role of Storage in Reducing CO2 Emissions

6. Summary
 6.1. The Model and the Modeling Process
 6.2. The Value of Storage

Appendices
 A. System Dynamics Modeling
 B. The Ontario Power System and the Base Case Assumptions
 C. Estimating the Need for Flexible Capacity in Ontario

References