RECOMBINATION AND HARDY-WEINBERG READING: Nielsen & Slatkin, pp. 107-116

- Aim: To understand how linkage (and genetic recombination) between different genetic loci affects frequencies of multilocus genotypes (genome structure), single locus genotypes, and their constituent alleles.

MULTIPLE LOCI, LINKAGE, AND RECOMBINATION

- Expression of most characters depends on more than 1 locus

- Saw that, assuming H-W conditions, diploid genotype frequencies can be found from allele frequencies after 1 generation of random mating.

Questions: Given H-W conditions

(1) Can multilocus gamete frequencies be computed using single locus allele frequencies?

(2) If so, will this be the case after a single round of random mating?

- Consider the simplest diploid case: 2 loci ("A" = flower color and "B" = flower shape), 2 alleles each (A, a and B, b)

 – 4 possible gametes: AB, Ab, aB, ab

 • gamete frequencies P_{AB}, P_{Ab}, P_{aB}, P_{ab} (Note: $P_{AB} + P_{Ab} + P_{aB} + P_{ab} = 1$)

 – 10 possible genotypes: AB/AB, AB/Ab, etc.

 • Practice Exercises:
 1) List the other 8 possible genotypes.
 2) Show that there are 16 genotypes if maternally and paternally inherited gametes can be distinguished.

 – Can the situation can be simplified?

 • Treat each gamete as a different allele (with names "AB", "Ab", etc.)
 – then, if parents mate randomly, offspring genotype frequencies will be
 $\text{Freq}(Ab/Ab) = P_{Ab}^2$, $\text{Freq}(AB/Ab) = 2P_{AB}P_{Ab}$, etc.

 • Lesson: with random mating, need to keep track of just 4 (or 3 independent) gamete frequencies to follow the 2-locus genotype frequencies

 – Question: Can we describe two-locus gamete frequencies with just 2 allele frequencies?
 $p_A, p_a = \text{allele frequencies at locus A}; p_B, p_b = \text{allele frequencies at locus B}$.

 • Note: $p_A = P_{AB} + P_{Ab}, p_B = P_{AB} + P_{aB}$, etc.
Answer: In general, no unless the population is in a state of **linkage equilibrium** in which case:

\[P_{AB} = p_A p_B , \quad P_{ab} = p_a p_b , \quad P_{ab} = p_a p_B , \quad P_{ab} = p_a p_b . \]

i.e., frequency of each gamete = product of frequencies of constituent alleles.

– **Question**: Are random mating populations in linkage equilibrium?

Answer Not necessarily. Consider, e.g., a random mating population with \(P_{AB} = \frac{1}{2} \), \(P_{ab} = 0 \), \(P_{ab} = \frac{1}{2} \).

Then \(p_A = p_a = P_B = p_b = \frac{1}{2} \), but \(P_{AB} = \frac{1}{2} \neq p_A p_B = \frac{1}{4} \), etc.

– Under H-W conditions populations will approach linkage equilibrium.

– Consider how this occurs...

• First, need to measure a population's degree of **linkage disequilibrium** (note, terminology is problematic - but well entrenched in the literature).

 – measured by a magic number called \(D \) (the “coefficient of disequilibrium”) which is defined as follows:

 \[
 D = P_{AB} - p_A p_B = P_{ab} - p_a p_b = P_{AB} - P_{ab} = P_{ab} - P_{AB} = p_A p_B - p_a p_b
 \]

 \[
 = P_{AB} P_{ab} - P_{Ab} P_{aB}
 \]

 (Yes, these definitions are all mathematically interchangeable: see Nielsen & Slatkin, p. 110.)

 – If \(D = 0 \), then \(P_{AB} = p_A p_B , \quad P_{ab} = p_a p_b \), etc. (i.e., linkage equilibrium)

 – In example above, \(D = \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) - 0 \cdot 0 = \frac{1}{4} \);

 – \(D \) can be negative or positive;

 • Upper and low limits of \(D \) depend on allele frequencies at both loci:

 Lower: larger of \(-p_A p_B \) and \(-p_a p_b \)

 Upper: smaller of \(p_A p_B \) and \(p_a p_B \)

 • E.g., if \(p_A = 1/4 \), \(p_B = 1/2 \), then \(-1/8 \leq D \leq 1/8\).

 • Widest limits on \(D \) occur when \(p_A = p_B = 1/2 : -1/4 \leq D \leq 1/4 \)
Practice Exercise: What are the gamete frequencies when \(D \) is at its extremes in these cases?

- Will now show that, under H-W conditions, \(D \to 0 \).

- Recursion for \(D \):
 \[
 D = \frac{P_{AB}}{p_A p_B}; \quad D' = \frac{P'_{AB}}{p'_A p'_B}
 \]
 - Under H-W, allele frequencies don't change so \(p'_A = p_A, p'_B = p_B \)
 - Just need to know how \(P_{AB} \) changes.

DIVERSION: Salient features of genetic recombination:

- Consider individual with genotype \(Ab/aB \)
- let \(r \) = the rate of recombination between locus A and locus B
- What gametes are produced? What ratios?
 - Ans. All 4: \((1-r)/2 Ab : (1-r)/2 aB : r/2 AB : r/2 ab \)
 - if loci are very close on a chromosome, then \(r = 0 \) ("tightly linked")
 - if loci are far apart or on different chromosomes, \(r = \frac{1}{2} \) ("loosely linked"/"unlinked")

- **Back to our story,** describing changes in \(P_{AB} \) (remember the goal is to find \(D' \))

- Consider the frequencies of parents that can produce \(AB \) gametes and the fraction of their gametic output which actually consists of \(AB \) gametes: **Handout I.3 Two-locus gamete production**

- Observation: Gamete frequencies affected by recombination only in double heterozygotes

- Adding up the 3rd column and simplifying:
 \[
 P'_{AB} = P^2_{AB} + P_{AB} P_a + P_{AB} P_b + (1-r)P_{AB} P_{ab} + rP_{AB} P_{ab} = P_{AB}(P_{AB} + P_{AB} + P_{ab} + P_{ab}) - r(P_{AB} P_{ab} - P_{AB} P_{ab})
 \]
 \[
 = P_{AB} - rD
 \]

- Finally
 \[
 D' = P'_{AB} - p'_A p'_B = (P_{AB} - rD) - p_A p_B = D - rD
 \]

- Important: Derivation assumes parental population itself was formed by random mating.
- Similar reasoning shows that \(P'_{Ab} = P_{Ab} + rD, P'_{aB} = P_{aB} + rD, \text{ and } P'_{ab} = P_{ab} - rD \).

Summary:

(1) allele frequencies \(p_A, p_B \) don't change
(2) gamete frequencies can increase or decrease
(3) Linkage disequilibrium \(D \) decreases by a factor \((1-r) \) each generation.
• Implications:

(1) Genetic equilibrium is not reached in 1 generation (contra H-W equilibrium for single locus)—even if loci are on different chromosomes \(r = 0.5 \) !!

(2) As long as \(r > 0 \), \(D \to 0 \).
 – \(D \) does not oscillate toward zero
 – Rate of approach depends on \(r \):
 • If \(r = 0.5 \), \(D \) will have only 3% of its original value after 5 generations
 • If \(r = 0.05 \), \(D \) will still have 77% of its original value after 5 generations

• What is the MEANING of \(D \)?
 – measures statistical rather than physical association between alleles at different loci
 • \(D = 0 \) ⇒ "no statistical association between loci"
 – i.e., if sampled gamete has \(A \) allele, chance it carries \(B \) allele is \(p_B \).
 • \(D = 1/4 \) ⇒ gamete with \(A (a) \) will also carry \(B (b) \)
 – \(D \) can be viewed as the covariance between alleles at \(A \) and \(B \) loci

• Why doesn’t recombination instantly randomize things like segregation did?
 – Punch line: Approach to linkage equilibrium limited by the number of double heterozygotes.

• Why allele frequencies and \(D \) are more useful than gamete frequencies
 [NOTE: descriptions are mathematically equivalent.]

 (1) If population is in linkage equilibrium, its genetic composition is easier to describe using allele frequencies and \(D \) vs. gamete frequencies.

 (2) Easier to comprehend evolution in terms of changes in \(p_A, p_B, \) and \(D \) versus gamete frequencies:

\[
P'_{AB} = \left(P_{AB} + P_{ab} \right) \left(P_{AB} + P_{ab} \right) + \left(1 - r \right) \left(P_{AB} P_{ab} - P_{AB} P_{ab} \right), \text{ etc.}
\]

 vs.

\[
p'_A = p_A, \quad p'_B = p_B, \quad D' = \left(1 - r \right) D
\]

• Biological Implications of \(D \):

 (1) If \(D \neq 0 \), events affecting one locus will incidentally affect the other locus.

 (2) \(D \neq 0 \) may reveal a population's history.