ESTIMATION AND HYPOTHESIS TESTING

- **Introduction**
 - Up to now, have treated genotype, gamete, & allele frequencies as known.
 - How do we determine what these frequencies are in "reality"?
 - How do we determine the validity (or not) of H-W in a study population?

- **Solution 1**: Sample genotypes of interest from **every** individual
 - No error, but not generally feasible.

- **Solution 2**: Sample genotypes from a "representative" subset of individuals from the population.
 - Generally feasible, but how much error?
 - Consider the following scenario:
 - Suppose 10 copies of a "rare" allele exist in a diploid population of 5,000 individuals
 \[
 \text{Allele frequency} = \frac{10}{2 \times 5000} = \frac{10}{10,000} = 0.001
 \]
 - Sample 50 individuals from this population. The chance that we do not sample even one copy of this rare allele is \((1 - 0.001)^{2 \times 50} = (0.999)^{100} \approx 90\%\)
 - I.e., 90% chance we will not know that this "rare" allele even exists!
 - The field of **statistics** deals with such uncertainty.

- Two main (inter-related) concerns addressed by statistics that are of interest to empiricists:
 1) **Estimation**
 - What is the frequency of _____?
 2) **Hypothesis Testing**
 - If I observe this and the world is like so, are my observations usual or not?
 - I.e., Is the world like I think it is?

- **Estimating Allele Frequencies**
 - Data from yellow fever mosquito (Aedes aegypti) collected in Ghana by J. Powell [reported in B. Weir "Genetic Data Analysis"]
Counts of allozyme genotypes from 40 individuals at the Isocitric dehydrogenase (IDH) locus: \(N_{11} = 24 \); \(N_{12} = 16 \); \(N_{22} = 0 \)

Want to compute the frequency of the "2" allele, \(p_2 \), in the Ghanaian population.

- **Estimate #1**: Use allele frequency in sample to infer allele frequency in population:
 \[
 \hat{p}_2 = \frac{N_{12} + 2N_{22}}{2(N_{11} + N_{12} + N_{22})} = \frac{16 + (2 \cdot 0)}{2 \cdot 40} = 0.2 .
 \]
 \((\wedge = \text{"estimate"}) \)

- **Estimate #2**: Assume population is in Hardy-Weinberg equilibrium. Then the frequency of the "22" homozygote is \((p_2)^2\). Using the frequency of 22-homozygotes in sample to infer the frequency in the population, estimate:
 \[
 \hat{p}_2 = \sqrt{\text{observed freq. of "22"-genotype}} = \sqrt{0} = 0 .
 \]

- **Estimate #3**: Use same reasoning to estimate \(p_1 \) and use the relation \(p_2 = 1 - p_1 \):
 \[
 \hat{p}_2 = 1 - \hat{p}_1 = 1 - \sqrt{\text{observed freq. of "11"-genotype}} = 1 - \sqrt{24} = 0.23 .
 \]

Three estimates (0.2, 0, 0.23) for \(p_2 \). Which to use?

Maximum Likelihood Estimates

- Key question: If the true value of \(p_2 = x \), then what is the probability of observing our data (\(N_{11} = 24 \), \(N_{12} = 16 \), \(N_{22} = 0 \))?

- **Likelihood of the data given** \(x = \text{Prob}[\text{Data} \mid \text{hypothesis } p_2 = x] \)

- "**Maximum Likelihood Estimate (MLE) of** \(p_2 \)" = the value of \(p_2 \) that maximizes the likelihood

 - In other words, the maximum likelihood estimate is the hypothesis (value of \(p_2 \)) which maximizes the probability of observing the data.

- MLE for mosquito data (assume Hardy-Weinberg equilibrium, use multinomial distribution):
• Prob(Data | \(p_2 = 0.1 \)) \(\approx 0.003 \)
• Prob(Data | \(p_2 = 0.2 \)) \(\approx 0.11 < \) 0.2 closest of these to the maximum likelihood estimate
• Prob(Data | \(p_2 = 0.3 \)) \(\approx 0.014 \)

– Can use calculus (or computer) to get answer directly: \(\hat{p}_2 = 0.2 \)

– MLE is conceptually simple, but very powerful (and flexible) statistical technique.

– Maximum likelihood is also covered in Appendix C of Nielsen & Slatkin, but is presented in a context that we will get to later in the course.

• Hypothesis Testing

– We may suspect that the H-W assumptions do not approximate the situation in the *Aedes* population very well.

– **Question**: How do we (scientifically) go about testing our suspicions that H-W conditions do **not** hold?

– **Answer**: Statistically, the best way: assume H-W **does** hold and then try to show that the data do not support this assumption.

• The H-W assumption in this case is called the "null hypothesis."

– **Procedure:**

 1. Determine what data are "expected" under the null hypothesis.

• If \(p_2 \) is the true frequency of the "2" allele, then under H-W assumptions "expect" to observe the following *numbers* of each genotype:

\[
\tilde{N}_{11} = 40 \cdot (1 - p_2)^2; \quad \tilde{N}_{12} = 40 \cdot 2(1 - p_2)p_2; \quad \tilde{N}_{12} = 40 \cdot p_2^2.
\]

• If \((\tilde{N}_{11}, \tilde{N}_{12}, \tilde{N}_{22}) \) are "significantly" different from our observations (24, 16, 0), then we can be more confident that our suspicions are true!

• Measure of "different": the *Chi-square Statistic*, \(X^2 \)

\[
(2) \text{Compute } X^2 = \frac{(24 - \tilde{N}_{11})^2}{\tilde{N}_{11}} + \frac{(16 - \tilde{N}_{12})^2}{\tilde{N}_{12}} + \frac{(0 - \tilde{N}_{22})^2}{\tilde{N}_{22}}
\]
• In general, \(X^2 = \sum \frac{(\text{Observed number} - \text{Expected number})^2}{\text{Expected number}} \)

• If \(X^2 \) is "large" then we conclude that H-W assumptions do not hold

– Problem with procedure: need to know \(p_2 \) in order to find \(\tilde{N}_{11}, \tilde{N}_{12}, \tilde{N}_{22} \).

– Solution: Use our best estimate of \(p_2 \): \(\hat{p}_2 = 0.2 \):

\[
\tilde{N}_{11} = 40 \cdot (1 - 0.2)^2 = 25.6; \quad \tilde{N}_{12} = 40 \cdot 2 \cdot 0.8 \cdot 0.2 = 12.8; \quad \tilde{N}_{11} = 40 \cdot 0.2^2 = 1.6
\]

so

\[
X^2 = \frac{(24 - 25.6)^2}{25.6} + \frac{(16 - 12.8)^2}{12.8} + \frac{(0 - 1.6)^2}{1.6} = 2.5.
\]

• Note: using \(\hat{p}_2 \) reduces our confidence in \(X^2 \) as a measure of discrepancy from the null hypothesis since a large value of \(X^2 \) may reflect a bad estimate for \(p_2 \) rather than departure from the null hypothesis, H-W.

– Probability that \(X^2 \) is “significantly” large or not depends on the chi-square distribution and the "degrees of freedom".

• Degrees of freedom = (number of categories – 1) – (number of estimated parameters)

 – reducing the degrees of freedom for estimated parameters corrects for possibility that \(X^2 \) is large due to bad estimates.

– With 3 genotypes (categories) and 1 estimated parameter (\(\hat{p}_2 \)), the value \(X^2 = 2.5 \) (with \(2 - 1 = 1 \) degree of freedom) is not unusually large under the null hypothesis (\(X^2 > 3.9 \) are "unusually" large in this case)

– Conclude: Our suspicions that H-W is false are not supported by this data.

– Careful: Cannot conclude from this that H-W assumptions do hold (weak inference).

• Can use likelihood to compare hypothesis. The likelihood ratio test compares the likelihood of the data under the null hypothesis to it likelihood given the MLE.

 – The likelihood ratio statistic \(G \) is defined
• the degrees of freedom equal the difference in number of parameters that require estimation between the two hypotheses.