Finite Population Size: Genetic Drift

READING: Nielsen & Slatkin pp. 21-27

– Will now consider in detail the effects of relaxing the assumption of infinite-population size.

– Start with an extreme case: a population of size \(N = 1 \) (an annual, self-fertilizing diploid plant).

• The sequence of events shown at right *could* occur at a particular locus:

• Notice:

 (1) Allele copies in individuals from generation 2 on are both descended from the same ancestral allele, \(c_1 \) (i.e., they are IBD)

 (2) If \(c_1 \) were an \(A \) allele, and \(c_2 \) an \(a \) allele, then the frequency of \(A \) changes from 1/2 to 1.

• Will see that these features are true of *any* finite sized population:

 (1) The level of inbreeding (homozygosity) increases.

 – eventually, all alleles will have descended from a single copy in an ancestor.

 (2) Allele frequencies will change due to randomness of meiosis.

 – eventually, the entire population will be homozygous.

 – This process of evolutionary change is called “**random genetic drift**.”

• Inbreeding and random genetic drift are two important consequences of finite population size.

 – We already discussed another when considering mutation.

– To study consequences in more detail, it will help to study the following thought experiment:

• Consider a hermaphroditic population of size \(N \) with \(2N \) gene copies at a locus:

• Each individual contributes a large (but equal) number of eggs and sperm to a gamete pool.
• N offspring are formed by drawing 1 egg and 1 sperm from pool at random.

• **NOTE:** Since $2N$ different allele copies can contribute to the gamete pool, the probability that a particular gene copy is drawn is $1/2N$.
 – Given that, the probability that the same allele copy is chosen again is still $1/2N$ due to the large & equal number of gametes shed by each individual.

• Inbreeding Due to Finite Population Size

– Consider how the inbreeding coefficient, f_t, changes in the population from generation $t-1$ to generation t.

– **Fact:** Because each generation is formed by random mating between all N individuals (including selfing), the inbreeding and kinship coefficients are the identical.

– Each offspring is formed by randomly choosing 2 alleles from the parent population, so:

 (a) with probability $1/2N$, the same allele copy is chosen twice
 • since the same allele is being copied, the inbreeding coefficient = 1.

 (b) with probability, $1 - 1/2N$, two different parental genes are chosen
 • these genes are IBD with probability = f_{t-1}.

– Putting these together: $f_t = (1/2N) \cdot 1 + (1 - 1/2N)f_{t-1}$

– If $f_0 = 0$, what is f_t?

 • Consider $h_t = 1 - f_t = \text{Prob. of non-identity of alleles}$
 • Then $h_t = (1/2N) \cdot 0 + (1 - 1/2N)h_{t-1} = (1 - 1/2N)h_{t-1}$.
 • If $h_0 = 1$, then $h_1 = (1 - 1/2N), h_2 = (1 - 1/2N)^2, ..., h_t = (1 - 1/2N)^t$ or

 $f_t = 1 - h_t = 1 - \left(1 - \frac{1}{2N}\right)^t \rightarrow 1$ as $t \rightarrow \infty$.

 • i.e., Alleles at each locus will eventually be IBD with probability 1.

• The rate of approach to complete inbreeding ($f = 1$) is roughly inversely proportional to population size.

 – E.g., for 50% of the population to become inbred, it takes $\approx 14,400$ generations for populations of size $N = 10,000$, and ≈ 138 generations for a population of size $N = 100$.

II-11
• Genetic Drift Due to Finite Population Size

– Two views of genetic drift:

(a) Within a single population.
 • random changes in allele frequencies occur until $p = 0$ or 1 is reached; no further change occurs after that.

(b) Across replicate populations.
 • Replicate population allele frequencies diverge through time.

– Relation between the two views:

 • overall statistical properties across replicate populations are interpreted as probabilities of particular outcomes within a single population, and vice versa.

• The above idealized model was used by Wright and Fisher to study drift.

– Will refer to it as the “Wright-Fisher model.”

– Specifically assume
 • Population of size N with $2N$ gene copies per locus
 • Suppose i of these are A alleles ($p = i/2N$)

– Q: How many copies of A will there be in the next generation?
 A: It depends, unless $i = 0$ or $2N$

– Better Question: What is $P_j = Pr(N_{A}^{(i+1)} = j | N_{A}^{(i)} = i)$?

 • Since each gene copy is drawn independently, this question is mathematically equivalent to the probability of getting j heads in $2N$ tosses of a coin whose probability of heads in any single toss is $i/2N$.

 • These probabilities are given by the **binomial distribution**:

 \[P_j = \binom{2N}{j} p^j (1-p)^{2N-j} \quad \text{where} \quad p = i/2N \quad \text{and} \quad \binom{2N}{j} = \frac{2N!}{j!(2N-j)!} \]

 – From an “across populations” view, imagine replicate populations each of size N and with i copies of the A allele, then $P_{ij} = \text{fraction of all populations with } j \text{ copies of the } A \text{ allele in the next generation.}$

– Now let’s use the Wright-Fisher model with these probabilities to study some properties of genetic drift in finite populations.
What is the average frequency of A over all replicate populations?

A: Binomial expectation: $E[j] = 2Np = 2N(i/2N) = i$ or, in terms of frequencies, $\bar{p}_i = p_0 = i/2N$.

- Punch Line: No Change is expected. In fact, $\bar{p}_i = p_0$.

How much do allele frequencies vary across the (initially identical) replicate pops?

A: Binomial variance: $\text{Var}(j) = 2Np_0(1 - p_0)$ so that $\text{Var}(p_i) = p_0(1 - p_0)/2N$.

- Can show that $\text{Var}(p_i) = [1 - (1 - 1/2N)^i]p_0(1 - p_0) \rightarrow p_0(1 - p_0)$ as $i \rightarrow \infty$.

- Term in brackets should remind you of f_i: $f_i = 1 - (1 - 1/2N)^i$.

- In fact: $f_i = \frac{\text{Var}(p_i)}{p_0(1 - p_0)} = \frac{\text{Var}(p_i)}{\bar{p}_i(1 - \bar{p}_i)}$.

- This suggests way to estimate f in an extent population.

- Remark: f_i above is exactly what we found for the Wahlund Effect!??

Three Quantitative Conclusions:

1. **PROBABILITY OF FIXATION:**

 Q: If Freq(A) = p initially, what is the probability A will become fixed or lost?

 - Answer 1 (replicate populations) Know:
 - All populations will eventually become fixed (i.e., $p_\infty = 0$ or $p_\infty = 1$).
 - Since the average frequency of A never changes, p populations must be fixed for A and $(1 - p)$ will have lost A.
 - Probability A is fixed = p, lost = $1 - p$.

 - Answer 2
 - In any one population, all alleles will eventually be descended from a single gene copy.
 - The chance that the lucky gene copy is an A allele is just the frequency of A in the original population.
 - Probability A is fixed = p, lost = $1 - p$.

 - Note: This conclusion is independent of the population size!

2. **DECLINE IN HETEROZYGOSITY**
Q: What happens to the average frequency of heterozygotes?

- Let $H_i = 2p_i(1-p_i)$
- Can show $E(H_{+i}) = (1-1/2N)H_i$

- Variation is lost, but very slowly if N is large.
 - e.g., if $N = 10^6$, 0.00005% of current heterozygosity is lost per generation.
 - Mendelian inheritance is thus a very powerful force for maintaining genetic variation in "large" populations (Flip side: drift is weak force in depleting genetic variation in large populations).

- Decline in expected heterozygosity does not imply heterozygote deficiencies within replicate subpopulations (as with the Wahlund effect).
 - Randomly mating subpopulations are in approximate H-W proportions.
 - The overall decline in heterozygosity is due to those subpopulations that are becoming fixed for different alleles.

(3) **TIME TO FIXATION**

Q: How many generations will it take for drift to cause fixation of either A or a?

- On average, it takes $\bar{t}(p) = -4[(1-p)\ln(1-p) + p\ln p]N$ generations.

- Note that $\bar{t}(p)$ depends on p and N
 - $\bar{t}(p) \propto N$
 - e.g., if $p = 0.5$ initially, $\bar{t}(0.5) \approx 2.7N$ generations.
 - This may be a long time for large populations.

Population Bottlenecks

- During population crashes or colonization events, a population may experience short periods with low numbers.
 - Numerous biologists have emphasized the importance of such "founder-flush" events in evolution.

- From a population genetics standpoint want to ask: What are the effects of drift during "population bottlenecks".
• A: Depends on
 (a) how small a population becomes.
 (b) how long it remains small.

 – Will examine the issue from two perspectives.

 (1) Effect of bottlenecks on heterozygosity

 • Consider a population bottleneck of 1 generation to $N = 2$.
 – Assume the population recovers to large size in generation 2.
 • Know that $E(H_{t+1}) = (1 - 1/2N)H_t$ or $\frac{E(H_{t+1} - H_t)}{H_t} = -1/2N$

 – In this case, only 25% of the heterozygosity is expected to be lost

 • Conclude: Appreciable amounts of heterozygosity will be lost due to drift only
 if population is small for an appreciable amount of time.

 (2) Effect of bottleneck on the number of alleles

 • Expect common alleles to persist, rare ones to be lost

 • Probability that an allele of frequency p is lost during a 1-generation bottleneck
 $= p^2N$.

 • Consider the following probabilities that an allele with frequency p will be lost
 during a 1-generation bottleneck of size N:

p	2	10	100	10,000
0.5	0.06	9.5×10^{-7}	6.2×10^{-6}	$<10^{-999}$
0.1	0.66	0.12	7.1×10^{-10}	7.1×10^{-916}
0.01	0.96	0.82	0.13	5.1×10^{-88}
0.001	0.9996	0.998	0.98	0.14

 • Notice that rare alleles are likely to be lost, however, their loss has little effect
 on heterozygosity.

 • The time needed to recover previous heterozygosity and # of alleles depends on
 what mechanism restores variation.

 – E.g., with mutation this would take a long time to accomplish.

 • Conclude
1) Common alleles are unlikely to be lost during a bottleneck

2) Rare alleles are highly prone to being lost.

– Implications:

• If evolution relies mainly on common alleles, a few generations of small population size won’t have much effect on one population’s long-term adaptive potential.

• If, in contrast, evolution relies on rare alleles, then bottlenecks erode the ability of populations to adapt.