Estimating Migration: Comparing F_{st} and Coalescent.

Introduction

- Gene flow is an important consideration for conservation biologists who try to maintain historical levels in the face of anthropogenic habitat fragmentation.
- Since Wright showed that at equilibrium, $F_{st} = \frac{1}{Nm+1}$, many papers have used F_{st} to estimate the number of migrants per generation.
- Due to several problems with assumptions, this estimation of migration and even use of F_{st} to estimate gene flow has been called into question.

F_{st} as a method of estimating gene flow and migration

- History of F_{st}
- Assumptions of F_{st}
- When does F_{st} work and when doesn’t it

Using the coalescent approach as a method of estimating gene flow and migration

- The basics/history of coalescent theory
 1. Kingman
 2. Visuals
 3. Forward vs backwards looking
 4. MMC

- Assumptions
 1. Wright Fisher model (and Moran)
 2. Neutrality, constant Ne, generations, etc...
 3. Recombination
 4. All populations sampled

- Modifications
 1. Selection
 2. Mutation
 3. Migration

- Connecting coalescent and migration
 1. Back to migration: connection between FST and coalescent (Slatkin 1997)
 2. Ghost populations

Real world comparison of F_{st} and Coalescent estimates

- Bittner and King (2003) compared different types of genetic markers as well as F_{st} and Coalescent approaches for estimating the number of migrants.
- F_{st} resulted in much higher migration rate estimates compared to Coalescent for both types of genetic markers.
Nathan Layman
Scott Farnsworth

- Based on biology and geographical barriers, coalescent estimate makes more biological sense.

Literature Cited

