ESTIMATION AND HYPOTHESIS TESTING

READING: H&C pp. 80-84

Introduction

– Up to now, have treated genotype, gamete, & allele frequencies as known.

 • How do we determine what these frequencies are in "reality"?

 • How do we determine the validity (or not) of H-W in a study population?

– **Solution 1:** Sample genotypes of interest from every individual
 • No error, but not generally feasible.

– **Solution 2:** Sample genotypes from a "representative" subset of individuals from the population.
 • Generally feasible, but how much error?

 • Consider the following scenario:

 – Suppose 10 copies of a "rare" allele exist in a diploid population of 5,000 individuals

 \[
 \text{Allele frequency} = \frac{10}{2 \times 5000} = \frac{10}{10,000} = 0.001
 \]

 – Sample 50 individuals from this population. The chance that we do not sample even one copy of this rare allele is
 \[
 1 - 0.001^{2 \times 50} = (0.999)^{100} \approx 90%
 \]

 • I.e., 90% chance we will not know that this "rare" allele even exists!

 • The field of **statistics** deals with such uncertainty.

– Two main (inter-related) concerns addressed by statistics that are of interest to empiricists:

 1) **Estimation**
 • What is the frequency of _______ ?

 2) **Hypothesis Testing**
 • If I observe this and the world is like so, are my observations usual or not?

 I.e., Is the world like I think it is?

Estimating Allele Frequencies

– Data from yellow fever mosquito (Aedes aegypti) collected in Ghana by J. Powell [reported in B. Weir "Genetic Data Analysis"]

– Counts of allozyme genotypes from 40 individuals at the Isocitric dehydrogenase (IDH) locus:

 \[N_{11} = 24 \quad ; \quad N_{12} = 16 \quad ; \quad N_{22} = 0 \]

 # individ. w/ 2 copies
 of "common" allele
– Want to compute the frequency of the "2" allele, \(p_2 \), in the Ghanaian population.

Estimate #1: Use allele frequency in sample to infer allele frequency in population:

\[
\hat{p}_2 = \frac{N_{12} + 2N_{22}}{2(N_{11} + N_{12} + N_{22})} = \frac{16 + (2 \cdot 0)}{2 \cdot 40} = 0.2. \quad (^\wedge = "estimate")
\]

Estimate #2: Assume population is in Hardy-Weinberg equilibrium. Then the frequency of the "22" homozygote is \((p_2)^2 \). Using the frequency of 22-homozygotes in sample to infer the frequency in the population, estimate:

\[
\hat{p}_2 = \sqrt{\text{observed freq. of } "22"\text{-genotype}} = \sqrt{\frac{0}{40}} = 0.
\]

Estimate #3: Use same reasoning to estimate \(p_1 \) and use the relation \(p_2 = 1 - p_1 \):

\[
\hat{p}_2 = 1 - \hat{p}_1 = 1 - \sqrt{\text{observed freq. of } "11"\text{-genotype}} = 1 - \sqrt{\frac{24}{40}} = 0.23.
\]

– Three estimates (0.2, 0, 0.23) for \(p_2 \). Which to use?

Maximum Likelihood Estimates

– Key question: If the true value of \(p_2 = x \), then what is the probability of observing our data \((N_{11} = 24, \ N_{12} = 16, \ N_{22} = 0)\)?

– **Likelihood of** \(x = \text{Prob}[\text{Data} | \text{hypothesis } p_2 = x] \)

– **"Maximum Likelihood Estimate (MLE) of** \(p_2 \)" = the value of \(p_2 \) that maximizes the likelihood

 • In other words, the maximum likelihood estimate is the hypothesis (value of \(p_2 \)) which maximizes the probability of observing the data.

– MLE for mosquito data (assume Hardy-Weinberg equilibrium, use multinomial distribution):

 • \(\text{Prob(Data} | \ p_2 = 0.1) = 0.003 \)
 • \(\text{Prob(Data} | \ p_2 = 0.2) = 0.11 \leftarrow 0.2 \text{ closest of these to the maximum likelihood estimate} \)
 • \(\text{Prob(Data} | \ p_2 = 0.3) = 0.014 \)

– Can use calculus (or computer) to get answer directly: \(\hat{p}_2 = 0.2 \)

– MLE is conceptually simple, but very powerful (and flexible) statistical technique.
• **Hypothesis Testing**

 – We may suspect that the H-W assumptions do not approximate the situation in the *Aedes* population very well.

 – **Question**: How do we (scientifically) go about testing our suspicions that H-W conditions do **not** hold?

 – **Answer**: Statistically, the best way: assume H-W **does** hold and then try to show that the data do not support this assumption.

 • The H-W assumption in this case is called the "**null hypothesis**."

 – **Procedure**:

 1. Determine what data are "expected" under the null hypothesis.

 • If \(p_2 \) is the true frequency of the "2" allele, then under H-W assumptions "expect" to observe the following numbers of each genotype:

 \[
 \tilde{N}_{11} = 40 \cdot (1 - p_2)^2 ; \quad \tilde{N}_{12} = 40 \cdot 2(1 - p_2)p_2 ; \quad \tilde{N}_{11} = 40 \cdot p_2^2 .
 \]

 • If \((\tilde{N}_{11}, \tilde{N}_{12}, \tilde{N}_{22})\) are "significantly" different from our observations \((24, 16, 0)\), then we can be more confident that our suspicions are true!

 • **Measure of "different"**: the **Chi-square Statistic**, \(X^2\)

 2. Compute

 \[
 X^2 = \frac{(24 - \tilde{N}_{11})^2}{\tilde{N}_{11}} + \frac{(16 - \tilde{N}_{12})^2}{\tilde{N}_{12}} + \frac{(0 - \tilde{N}_{22})^2}{\tilde{N}_{22}}
 \]

 • In general, \(X^2 = \sum \frac{(\text{Observed number} - \text{Expected number})^2}{\text{Expected number}}\)

 • If \(X^2\) is "large" then we conclude that H-W assumptions do not hold

 – Problem with procedure: need to know \(p_2\) in order to find \((\tilde{N}_{11}, \tilde{N}_{12}, \tilde{N}_{22})\).

 – **Solution**: Use our best estimate of \(p_2\): \(\hat{p}_2 = 0.2\):

 \[
 \tilde{N}_{11} = 40 \cdot (1 - 0.2)^2 = 25.6; \quad \tilde{N}_{12} = 40 \cdot 2 \cdot 0.8 \cdot 0.2 = 12.8; \quad \tilde{N}_{11} = 40 \cdot 0.2^2 = 1.6
 \]

 so

 \[
 X^2 = \frac{(24 - 25.6)^2}{25.6} + \frac{(16 - 12.8)^2}{12.8} + \frac{(0 - 1.6)^2}{1.6} = 2.5.
 \]
• Note: using \hat{p}_2 reduces our confidence in X^2 as a measure of discrepancy from the null hypothesis since a large value of X^2 may reflect a bad estimate for p_2 rather than departure from the null hypothesis, H-W.

– Probability that X^2 is “significantly” large or not depends on the chi-square distribution and the "degrees of freedom".

• Degrees of freedom = (number of categories – 1) – (number of estimated parameters)

 – reducing the degrees of freedom for estimated parameters corrects for possibility that X^2 is large due to bad estimates.

– With 3 genotypes (categories) and 1 estimated parameter (\hat{p}_2), the value $X^2 = 2.5$ (with $2 – 1 = 1$ degree of freedom) is not unusually large under the null hypothesis ($X^2 > 3.9$ are "unusually" large in this case)

– Conclude: Our suspicions that H-W is false are not supported by this data.

 – Careful: Cannot conclude from this that H-W assumptions do hold (weak inference).

• Can use X^2 statistic to compare specific hypothesis

 – see HANDOUT 1.4. Comparing Hypothesis: The genetic basis of ABO blood groups.