INTRODUCTION TO F (OR G) STATISTICS

F and G statistics are used to

- describe levels of genetic diversity that occur within and between subpopulations
- estimate levels of gene flow

F and G stats are often called diversity Indices since they are based on actual, potential, and/or virtual heterozygosities

Imagine a collection of subpopulations

- Let $p_{s,j} =$ frequency of allele A_j in subpopulation s. $j = 1, ..., k$ (i.e., there are k alleles)
- $H_s =$ observed frequency of heterozygotes in subpopulation s;

Define the following

1. $H_i = \text{avg} (H_s) =$ average frequency of heterozygotes in subpopulation s.

2. $H_{S,s} =$ Expected frequency of "heterozygotes" in subpopulation s assuming random union of gametes

\[
H_{S,s} = 1 - \sum_{j=1}^{k} p_{j,s}^2
\]

where $p_{j,s}^2 = \text{avg} (p_{j,s}^2) =$ Average frequency of homozygotes (of any kind) expected under R.U.G.

3. $H_T =$ expected frequency of heterozygotes if entire population were to mate at random

\[
H_T = 1 - \sum_{j=1}^{k} (\overline{p}_j)^2 \quad \text{where} \quad \overline{p}_j = \text{avg} (p_{j,s}).
\]

Observation 1: \overline{H}_s and H_T can be computed for haploids and polyploids, in which case they represent virtual (instead of actual) expected heterozygosities.

Observation 2: With two alleles, $H_{S,s} = 2p_sq_s$ and $H_T = 2\overline{p}\overline{q}$

Comment: When estimating these diversity indices, these formulae are not statistically optimal since they don't account for sampling error.

Now, let's define the F statistics (F_{IS}, F_{ST}, F_{IT}) themselves...
(1) \(F_{IS} = \frac{H_s - H_I}{H_s} \) = reduction in heterozygosity due to nonrandom mating between relatives within subpopulations

(2) \(F_{ST} = \frac{H_T - H_I}{H_T} \) = reduction in heterozygosity due to population subdivision (the Wahlund effect, as we'll see)

(3) \(F_{IT} = \frac{H_T - H_I}{H_T} \) = reduction in heterozygosity due to nonrandom mating between relatives within subpopulations and population subdivision (again, Wahlund effect)

"Reduction in heterozygosity" \(\equiv \) "Inbreeding"

Only \(F_{ST} \) can be computed for non-diploids

When there are \(> 2 \) alleles, \(F_{ST} \) is called \(G_{ST} \).

Again, different formulae are used in practice to actually estimate \(F \) statistics

EXAMPLE: "Wahlund Effect"

- Moral: \(F_{ST} \) measures reduction in heterozygosity due to population subdivision

- Recall:
 - we have a collection of infinitely-sized subpopulations
 - two alleles, \(A \) and \(a \) with frequencies \(p_{1,s} \) (\(= \) "\(p \)"") and \(p_{2,s} \) (\(= \) "\(q \)"") in subpopulation \(s \)
 - within subpopulations, there is random mating

- Then, \(H_I \) = the average observed frequency of heterozygotes in subpopulation \(s = \frac{\text{avg}(2p_{1,s}p_{2,s})}{2\bar{p}_1\bar{p}_2} \) = "\(2\bar{p}\bar{q} - 2\text{Var}(p) \)" (as we saw several weeks ago) = \[2\bar{p}_1\bar{p}_2 - 2\text{Var}(p_i) \] (using the new lingo)

- \(H_{IS} \) = expected freq. of hets. under R.U.G = \(2p_{1,s}p_{2,s} \)

- \(\bar{H}_s \) = \(\text{avg}(H_{Is,s}) = \text{avg}(2p_{1,s}p_{2,s}) = 2\bar{p}_1\bar{p}_2 - 2\text{Var}(p_i) = H_I \! \)

- Finally, \(H_T = 2\bar{p}_1\bar{p}_2 \)

- So, \(F_{IS} = \frac{\bar{H}_s - H_I}{\bar{H}_s} = \frac{[2\bar{p}_1\bar{p}_2 - 2\text{var}(p_i)] - [2\bar{p}_1\bar{p}_2 - 2\text{var}(p_i)]}{2\bar{p}_1\bar{p}_2 - 2\text{var}(p_i)} = 0 \)

\(F_{ST} = \frac{[2\bar{p}_1\bar{p}_2] - [2\bar{p}_1\bar{p}_2 - 2\text{var}(p_i)]}{2p_1p_2} = \frac{\text{var}(p_i)}{p_1p_2} \)
Also, \[
F_{IT} = \frac{2\bar{p}_1\bar{p}_2 - \left[2\bar{p}_1\bar{p}_2 - 2\text{var}(p_i)\right]}{2\bar{p}_1\bar{p}_2} = \frac{\text{var}(p_i)}{\bar{p}_1\bar{p}_2} = F_{ST}
\]

– Conclusions:

• All inbreeding is due to population subdivision, none due to nonrandom mating between relatives; (i.e., \(F_{IT} = F_{ST}\))

• \(F_{ST}\) is the inbreeding coefficient, \(f\), we computed previously for the Wahlund effect.

– Typical values of \(F_{ST}\)