Selection and Mutation

– Consider cases with no “back mutation” (i.e., no mutation to advantageous types)

 • This is often a good approximation to the real world since:

 (1) backward mutation is usually 2 or more orders of magnitude smaller than forward mutation.

 (2) many more deleterious alleles will be eliminated by selection than are created by mutation so deleterious alleles are rare anyway.

 • Note: our focus is on deleterious mutations here since in these cases, selection opposes mutation as an evolutionary force.

1) Haploid mutation-selection balance:

 • Life Cycle:

 \[\text{zygotes} \xrightarrow{\text{selection}} \text{adults} \xrightarrow{\text{mutation}} \text{gametes} \xrightarrow{\text{random union}} \text{zygotes} \]

 \[p \xrightarrow{\text{selection}} p^* \xrightarrow{\text{mutation}} p^{**} \xrightarrow{\text{random union}} p' \]

 • Fitnesses:

 \[w_A : w_a = 1:1 - s \]

 \[p = \text{freq. } A, \quad q = \text{freq. } a \]

 • After selection:

 \[p^* = p \cdot \frac{w_A}{w} = p \left(\frac{1}{1 - sq} \right) \]

 • Let \(u = A \rightarrow a \) mutation rate (ignore back mutation \(a \rightarrow A \): i.e., \(v = 0 \)), then

 \[p' = p^{**} = p^*(1 - u) = \frac{(1 - u)p}{1 - sq} \]

 • At equilibrium, \(p' = p \) and \(\hat{q}_{\text{hap}} = 1 - \hat{p}_{\text{hap}} = u/s \).

 – I.e., \(\hat{q}_{\text{hap}} \) = ratio of mutation rate to rate of selective elimination.

 • Note:

 – \(u = 10^{-6} \), \(s = 0.01 \) implies \(\hat{q} = 10^{-4} \)

 – Recall: not all mutations are deleterious.

 • polymorphisms of selectively neutral alleles are maintained by a balance between mutation and random genetic drift.

2) Diploid mutation-selection balance:

<table>
<thead>
<tr>
<th>Genotype</th>
<th>AA</th>
<th>Aa</th>
<th>aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitness</td>
<td>1</td>
<td>(1 - hs)</td>
<td>(1 - s)</td>
</tr>
</tbody>
</table>

• Using approach analogous to that for haploids (substitute \(\overline{w}_A \) instead of \(w_A \), etc.):
\[p^* = p \frac{W_A}{W} \text{ and } p' = (1 - u)p^* = (1 - u)p \frac{W_A}{W} \]

- Setting \(p' = p \), can solve for equilibrium frequency of deleterious \(a \) allele (\(\hat{q} = 1 - \hat{p} \)):
 - Two cases of interest:

 (a) **Recessive Mutant:** \(h = 0 \)

 - Solving for equilibrium shows \(\hat{q}_{\text{rec}} = \sqrt{us} \).
 - Note: \(u < s \) so \(\hat{q}_{\text{rec}} > \hat{q}_{\text{hap}} \) for the same \(u, s \).

 (b) **Partial Dominance:** \(h > 0 \)

 - By ignoring \(\hat{q}_{\text{rec}}^2 \) in the equilibrium equations, find that \(\hat{q}_h \approx us(hs) \).
 - Approximation fails as \(h \to 0 \) (recessive case).
 - Since most affected individuals are heterozygous, \(\hat{q}_h \) is approximately the ratio of the mutation rate to average selective disadvantage.

- **General Comments**

 - Fraction of affected individuals is the same in haploids as in diploids

 - e.g., haploid affecteds: \(\hat{q}_{\text{hap}} = us \); recessive affecteds: \(\hat{P}_{aa} = \hat{q}_{\text{rec}}^2 = us(hs) \).

 - Can often use observed frequencies and known fitnesses of affected individuals to estimate the mutation rate.

Mutation Load

- How does mutation impair average population fitness?
 - J.B.S. Haldane asked (& answered) this question in 1937.
 - Interest was rekindled (by H. J. Muller) after Hiroshima and Nagasaki bombed using atomic weapons.

 - For a single recessive locus, can define this effect as follows:

 - Frequency of the affected individuals is \(\hat{P}_{aa} = \hat{q}_{\text{rec}}^2 = (\sqrt{us})^2 = u/s \).
 - Fitness lowered by a relative amount \(s \) per affected individual
 - Total reduction in fitness: \((u/s) \times s = u\)
 - This is the “mutation load” for a recessive deleterious.
 - notice that the mutation load is independent of \(s \).

 - Similarly, for partially dominant mutations

 - Assume \(\hat{q}_h \ll 1 \)

 - Frequency of affecteds = frequency of heterozygotes = \(2\hat{q}_h(1-\hat{q}_h) \approx 2\hat{q}_h \approx (2u)/hs \).
 - Mutation load (total reduction in fitness): \((2u/hs) \times hs = 2u\).
 - Again, mutation load is independent of \(s \).
Punch Line: Mutation load depends only on mutation rate and not on a mutant's fitness effects (i.e., s).

Why is this?
- Highly deleterious mutations equilibrate at low frequencies;
- Mildly deleterious mutations equilibrate at high frequencies;
- Net effect in either case is the same.

Muller: “One mutation equals one death”

- At equilibrium, each new mutation in a population is offset by the loss of another one due to selection.

- Small selection coefficient means only that the risk of death for an affected individual is smaller, not that the total number of deaths is smaller.

 - Either
 - many individuals have smaller probabilities of death,
 - or few individuals have a high probability of death.

- Ethical dilemma: do medical advances relieve suffering?
 - Individual suffering is generally reduced.
 - Result is that more individuals suffer mild effects.