1. (a) \(\text{rank}(A) = 2. \)
\[
\begin{pmatrix}
 1 & 0 & -2 & 1 \\
 0 & 1 & 1 & 0 \\
 0 & 0 & 0 & 0
\end{pmatrix}
\]
(Underlined entries are pivots.)
(b) \[
\begin{pmatrix}
 1 & 0 & -2 & 1 \\
 0 & 1 & 1 & 0 \\
 0 & 0 & 0 & 0
\end{pmatrix}
\]
(c) Basic columns: \(A_{\ast 1}, A_{\ast 2}. \) Nonbasic columns: \(A_{\ast 3}, A_{\ast 4}. \)
Relationships: \(A_{\ast 3} = -2A_{\ast 1} + A_{\ast 2}, \quad A_{\ast 4} = A_{\ast 1} \)

2. (a) Gaussian elimination will not introduce nonzero elements into a column containing only zeros. Consequently, a column containing all zeros cannot contain a pivot since pivots, by definition, must be nonzero. Thus, a column with all zeros cannot be basic.
(b) Consider the matrix
\[
\begin{pmatrix}
 * & * & * \\
 0 & * & *
\end{pmatrix}
\]
where each * represents a nonzero entry. This matrix is in row echelon form; the pivots are underlined. Although the 3rd column contains no zero entries, it also has no pivot and so is nonbasic.

3. The system is consistent for any values of \(b_1 \) and \(b_2. \)

4. \(A \) is symmetric but not skew-symmetric, hermitian, or skew-hermitian.

5. Conjugate transposition is not linear since \((\alpha A)^* = \overline{\alpha} A^* \neq \alpha A^*. \)