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abstract: Species interactions commonly coevolve as complex geo-
graphic mosaics of populations shaped by differences in local selec-
tion and gene flow. We use a haploid matching-alleles model for
coevolution to evaluate how a pair of species coevolves when fitness
interactions are reciprocal in some locations (“hot spots”) but not
in others (“cold spots”). Our analyses consider mutualistic and an-
tagonistic interspecific interactions and a variety of gene flow patterns
between hot and cold spots. We found that hot and cold spots to-
gether with gene flow influence coevolutionary dynamics in four
important ways. First, hot spots need not be ubiquitous to have a
global influence on evolution, although rare hot spots will not have
a disproportionate impact unless selection is relatively strong there.
Second, asymmetries in gene flow can influence local adaptation,
sometimes creating stable equilibria at which species experience min-
imal fitness in hot spots and maximal fitness in cold spots, or vice
versa. Third, asymmetries in gene flow are no more important than
asymmetries in population regulation for determining the mainte-
nance of local polymorphisms through coevolution. Fourth, intra-
specific allele frequency differences among hot and cold spot pop-
ulations evolve under some, but not all, conditions. That is, selection
mosaics are indeed capable of producing spatially variable coevo-
lutionary outcomes across the landscapes over which species interact.
Altogether, our analyses indicate that coevolutionary trajectories can
be strongly shaped by the geographic distribution of coevolutionary
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hot and cold spots, and by the pattern of gene flow among
populations.

Keywords: geographic mosaic, coevolution, hot and cold spots, hard
and soft selection, mutualism, antagonism.

Interspecific interactions between pairs of species are often
composed of collections of genetically differentiated pop-
ulations connected by gene flow. Well-studied examples
from natural populations include interactions between
wild flax and flax rust (Burdon and Thrall 1999), snails
and trematodes within New Zealand lakes (Lively 1999),
wild Drosophila melanogaster populations and their par-
asitoids (Kraaijeveld and Godfray 1999), legumes and rhi-
zobia (Parker and Spoerke 1998; Parker 1999), red cross-
bills and lodgepole pines (Benkman 1999), garter snakes
and Taricha salamanders (Brodie and Brodie 1999), wild
parsnips and parsnip webworms (Berenbaum and Zangerl
1998), yuccas and yucca moths (Leebens-Mack et al. 1998),
and Greya moths and their saxifragaceous host plants
(Thompson 1999). All these interactions show geographic
differentiation in the genetic structure of the interacting
populations and in the traits important to the association.

The geographic mosaic theory of coevolution argues
that the overall coevolutionary dynamics of such inter-
actions are driven by three components of geographic
structure: selection mosaics, coevolutionary hot spots, and
trait remixing (Thompson 1994; Thompson 1997). Selec-
tion mosaics occur when natural selection on interactions
varies among different communities. Hot spots are com-
munities in which interacting species have reciprocal ef-
fects on fitness and are often embedded within surround-
ing communities in which interspecific selection affects
only one or neither species (cold spots). Finally, a com-
bination of gene flow, random genetic drift, and extinc-
tion/colonization dynamics continually reshapes the ge-
netic landscape over which future selection takes place
(trait remixing). This tripartite coevolutionary process
should produce three general ecological patterns: different
combinations of coevolved traits in different regions, local



Coevolution in Coupled Hot and Cold Spots 157

Figure 1: Types of coupled coevolutionary hot and cold spot habitats.
Curved arrows indicate interspecific effects on fitness. The fitness of a
species at the arrow tip is affected by the other species. Horizontal arrows
indicate species-specific patterns of gene flow between hot and cold spots.
Solid and dashed arrows indicate unlimited and limited levels of gene
flow, respectively.

maladaptation within some interactions, and few geo-
graphically uniform coevolved traits.

There is now evidence for selection mosaics (e.g., Brodie
and Brodie 1991; Ritland 1995; Travis 1996; Carroll et al.
1997; Radtkey et al. 1997), coevolutionary hot spots (Benk-
man 1999), and trait remixing (e.g., Dybdahl and Lively
1996; Burdon and Thrall 1999) in coevolving interactions.
Formal theory exploring these components of the geo-
graphic mosaic is beginning to provide more precise pre-
dictions of how these components interact to shape co-
evolutionary dynamics. Two models have explicitly
explored the development and dynamics of selection mo-
saics among coevolutionary hot spots. Hochberg and van
Baalen (1998) showed that interactions between predators
and prey along environmental gradients of prey produc-
tivity (i.e., prey birth rate) can produce gradients of coe-
volutionary hot spots that vary in selection intensity. Using
a different approach, Nuismer et al. (1999) evaluated a
genetic model in which interactions between two species
varied from antagonism to mutualism among commu-
nities. They modeled an extreme selection mosaic (antag-
onism vs. mutualism) that included a pair of equal-sized
coevolutionary hot spots connected by gene flow. Al-
though the above models do not consider cold spots, their
results hint at the importance of components of selection
mosaics in shaping the overall coevolutionary trajectory
of interacting species. Moreover, Nuismer et al.’s (1999)
analyses indicated that local coevolutionary dynamics can
depend strongly on geographically connected coevolu-
tionary hot spots. Under some conditions (e.g., geographic
asymmetries in the strength of reciprocal selection and
moderate gene flow levels), the coevolutionary dynamics
of a local interaction with mutualistic selection could ac-
tually resemble those of an isolated antagonistic interaction
or vice versa. Minimization of local fitness was a common
consequence of coevolution in this model.

Here, we analyze the scenario directly envisioned by the
geographic mosaic theory in which coevolutionary hot
spots exist within a broader geographic landscape that in-
cludes regions of coevolutionary cold spots, that is, regions
in which there is no reciprocal selection. Specifically, we
examine how the frequencies of hot and cold spots com-
bined with various patterns of gene flow can shape co-
evolution for a pair of species distributed across a land-
scape containing hot and cold spots.

The goal of our analyses is to develop a formal under-
standing of how gene flow between hot and cold spots
creates coevolutionary dynamics different from those that
would be predicted for closed populations. We are espe-
cially interested in using the models as a step toward un-
derstanding three practical questions on how ongoing co-
evolution contributes to the organization of biodiversity.
First, must hot spots be nearly ubiquitous for coevolution

to be important in shaping the overall evolution of species?
Or, can cold spots have disproportionately strong effects
on the overall evolution of interactions when rare? Second,
how do asymmetric patterns of gene flow between species
interact with spatially variable selection to shape the evo-
lution of interactions? Examples of such asymmetries are
growing as the evolutionary genetics of more interactions
are studied in detail (Michalakis et al. 1993; Dybdahl and
Lively 1996; Thrall and Burdon 1997; Althoff and Thomp-
son 1999). Moreover, a recent metapopulation model sug-
gests that asymmetric gene flow among hot spots can in-
fluence the potential for local adaptation in coevolving
hosts and parasites (Gandon et al. 1996). Third, do selec-
tion mosaics, coevolutionary hot spots, and trait remixing
tend to create spatially variable patterns of evolution across
landscapes? If so, then coevolution is likely to be an im-
portant determinant of ecological interactions and dynam-
ics within local communities.

We begin by developing a general model for the evo-
lutionary dynamics of a pair of interacting species inhab-
iting a geographically variable landscape that includes hot
and cold spots. Our general model can be applied to most
any pattern of gene flow between hot spots and cold spots
(fig. 1). Although biologically simple, the general model
is mathematically cumbersome and difficult to analyze
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comprehensively. Instead, we analyze the coevolutionary
dynamics of hot and cold spots for a series of relatively
extreme, but biologically realistic, gene flow patterns and
then use those analyses to understand the more inter-
mediate cases.

A General Model

In this section, we describe a simple, general model for
the evolutionary dynamics of two species named X and Y
that can mutually affect one another’s fitness, depending
on the geographic location of the interaction. Variables
and parameters of the model are listed in table 1. Although
reciprocal selection can vary continuously across space,
our model will recognize just two patch types: cold spots
and hot spots. Cold spots are defined as regions in which
the fitnesses of at most one of the two species depend on
interactions with the second species. Hot spots, in contrast,
are defined as areas in which the species have reciprocal
effects on each other’s fitnesses.

We assume that X and Y are both haploid with syn-
chronous, discrete, and nonoverlapping generations. Fit-
nesses within each species depend on a single major gene
with two alleles. In species X, the alleles are X1 and X2,
and in species Y, they are Y1 and Y2. We assume that allele
frequencies are censused after mating (reproduction). A
fraction h of newly formed zygotes in both species are
found in hot spots, while the remaining occur in1 2 h
cold spots. We assume that hot and cold spots lack explicit
spatial structure. In hot spots, the frequencies of alleles X1

and Y1 in newborns are denoted by xH and yH, respectively;
corresponding frequencies in cold spots are xC and yC.
Local frequencies of the “2” alleles can be obtained by
subtracting the “1” allele frequency from 1 (e.g., the fre-
quency of X2 in cold spots is ).1 2 x C

We assume that selection occurs before migration. (The
order of these events has no qualitative effect on the re-
sults.) We posit that fitnesses in species X depend on the
local allele frequencies of species Y in both hot and cold
spots and that the form of frequency dependence is the
same in both patches. We let Vi(y) denote the fitness of
allele Xi ( ) when the local frequency of Y1 is y. Notei = 1, 2
that fitnesses of Xi will vary spatially whenever allele fre-
quencies in species Y differ between hot and cold spots.
The notation Vi(y) emphasizes that intraspecific-frequency
dependence is assumed to be negligible.

We now turn to the fitnesses of species Y. In cold spots,
by definition, the fitnesses of no more than one of the two
species can be affected by the presence of the other species.
Since fitnesses in species X depend on allele frequencies
in Y in both cold and hot spots, the fitnesses of species Y
in cold spots must be unaffected by species X. To em-
phasize this, we will let the fitness of allele Yi in cold spots

be Qi, a constant. In hot spots, the fitness of Yi, denoted
Wi(xH), depends on the local allele frequencies in X. (Note
that intraspecific effects on fitness are again ignored.) So
species Y is, overall, less sensitive to allelic variation in
species X than X is to allelic variation in Y.

Allele frequencies after selection in hot and cold spots
are determined by standard formulas. If we indicate post-
selection frequencies with an asterisk, then

V (y )1 H∗x = x , (1a)H H
V(x , y )H H

V (y )1 C∗x = x , (1b)C C
V(x , y )C C

W(x )H∗y = y , (1c)H H
W(x , y )H H

Q1∗y = y , (1d)C C
Q(y )C

where

V(x , y ) = x V (y ) 1 (1 2 x )V (y ), (2a)H H H 1 H H 2 H

V(x , y ) = x V (y ) 1 (1 2 x )V (y ), (2b)C C C 1 C C 2 C

W(x , y ) = y W (x ) 1 (1 2 y )W (x ), (2c)H H H 1 H H 2 H

Q(y ) = y Q 1 (1 2 y )Q (2d)C C 1 C 2

are the mean fitnesses for each species in hot and cold
spots.

Selection may also change the allocation of individuals
in the two habitats (see, e.g., Nagylaki 1992). Let and∗h X

denote the respective proportions of species X and Y∗h Y

in hot spots after selection but before migration. We will
consider two simplifications that represent extremes in
how population size is regulated (Christiansen 1985): “soft
selection” and “hard selection.” With soft selection, the
number of surviving adults in a particular patch is deter-
mined independently of local selection. This implies that
population size is regulated independently within each
habitat (Dempster 1955; see Christiansen 1985 for an ex-
plicit formulation). We assume that the postselection frac-
tions of individuals in hot and cold spots are unchanged
given soft selection:

∗ ∗h = h and/or h = h. (3)X Y

In contrast to soft selection, the proportion of adults in
hot (and cold) spots under hard selection depends directly
on local fitnesses:



Coevolution in Coupled Hot and Cold Spots 159

Table 1: Variables and parameters used in the text

Notation Description

xC( )∗xC Frequency of X1 in cold spots before (after) selection
xH( )∗xH Frequency of X1 in hot spots before (after) selection
yC( )∗yC Frequency of Y1 in cold spots before (after) selection
yH( )∗yH Frequency of Y1 in hot spots before (after) selection
Vi(y) Fitness of Xi when the local frequency of Y = y1

Wi(x) Fitness of Yi in hot spots
Qi Fitness of Yi in cold spots
h Fraction of new zygotes in hot spots

∗ ∗h (h )X Y Fraction of species X (Y) in hot spots after selection
X Ym (m )CrH CrH Probability of migrating from cold to hot spots in species X (Y)
X Ym (m )HrC HrC Probability of migrating from hot to cold spots in species X (Y)

x(y) Shared frequency of X1 (Y1) allele in hot and cold spots
wC Fixed frequency of Y1 allele in cold spots
s Selection coefficient for Y1 in cold spots = Q 2 Q1 2

V(x , y )H H∗h = h (4a)X
hV(x , y ) 1 (1 2 h)V(x , y )H H C C

for species X and

W(x , y )H H∗h = h (4b)Y
hW(x , y ) 1 (1 2 h)Q(y )H H C

for Y. Hard selection implies that population sizes are reg-
ulated globally (Dempster 1955; Christiansen 1985). In
ecological terms, this means there is no local density
dependence.

After selection, adults may migrate between hot and cold
spots. There are a variety of ways that gene flow could
occur, some of which are depicted in figure 1. We denote
the probability that an individual in a cold spot migrates
to a hot spot by for species X and by forX Ym mCrH CrH

species Y. The respective probabilities of migrating from
hot to cold spots are and .X Ym mHrC HrC

After migration, we assume that random mating and
reproduction occurs within each patch. Finally, we assume
that postmigration populations are regulated so that new-
borns within each species occur in proportions h and

, respectively, in hot and cold spots. Provided mu-1 2 h
tation and random genetic drift are relatively weak, our
assumptions imply that the allele frequencies at the start
of the next generation (signified by a prime) are

X ∗ ∗ X ∗ ∗(1 2 m )h x 1 m (1 2 h )xHrC X H CrH X C′x = , (5a)H X ∗ X ∗(1 2 m )h 1 m (1 2 h )HrC X CrH X

X ∗ ∗ X ∗ ∗m h x 1 (1 2 m )(1 2 h )xHrC X H CrH X C′x = , (5b)C X ∗ X ∗m h 1 (1 2 m )(1 2 h )HrC X CrH X

Y ∗ ∗ Y ∗ ∗(1 2 m )h y 1 m (1 2 h )yHrC Y H CrH Y C′y = , (5c)H Y ∗ Y ∗(1 2 m )h 1 m (1 2 h )HrC Y CrH Y

Y ∗ ∗ Y ∗ ∗m h y 1 (1 2 m )(1 2 h )yHrC Y H CrH Y C′y = . (5d)C Y ∗ Y ∗( )m h 1 (1 2 m ) 1 2 hHrC Y CrH Y

The postselection frequencies and and proportions∗ ∗x yi i

and are as defined above. Note that the first term∗ ∗h hX Y

in the numerator of each right-hand-side expression is
proportional to the total contribution of X1 or Y1 alleles
that were in hot spots just before migration. Each second
term is proportional to the number of the same alleles
originally in cold spots. The denominators correspond to
the total number of alleles in hot (cold) spots after
migration.

The recursions (5) are sufficiently general to include
almost any species-specific pattern of gene flow between
hot and cold spots (fig. 1). For example, to describe un-
limited migration in species X, as in the classical “Levene
model” (Levene 1953), one would set andXm = 1 2 hHrC

since, by assumption, any individual will migrateXm = hCrH

(perhaps internally) to hot and cold spots with probabil-
ities h and , respectively. Unidirectional gene flow1 2 h
within a species can be modeled by setting one of that
species’ two migration parameters to 0.

The model (5) can easily be extended to diploid species
or interacting haploid and diploid species by replacing the
local postselection frequencies and (eqq. [1]) with∗ ∗x yi i

standard haploid or diploid expressions. One can also
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modify the model to describe evolution in a selection mo-
saic consisting of two coupled hot spots (as in Nuismer
et al. 1999) by using frequency-dependent fitnesses in (1d)
and allowing the form of frequency dependence to differ
between the two hot spots (e.g., a mutualism coupled with
an antagonism). These extensions will not be considered
here.

For most of our analyses, we focus on one of the sim-
plest possible forms of interspecific frequency-dependent
selection, namely, fitnesses that are symmetric and linear
functions of frequency (Seger 1988; Gavrilets and Hastings
1998). For species X, we use the following relative fitnesses
in hot and cold spots:

V (y) = 1 1 ay, (6a)1

V (y) = 1 1 a(1 2 y), (6b)2

where y is the local frequency of allele Y1. Likewise, the
relative fitnesses of species Y in hot spots will be

W (x ) = 1 1 bx , (7a)1 H H

W (x ) = 1 1 b(1 2 x ). (7b)2 H H

(Recall that Y has constant fitnesses Q1 and Q2 in cold
spots.) The parameters a and b determine the sensitivity
of an allele’s fitness to changes in the frequency of its
matching allele in the other species. In particular, the signs
of a and b describe the nature of interspecific interactions
and their magnitudes reflect (roughly) the strengths of
selection. We assume , which ensures that fit-FaF, FbF ! 1
nesses are positive for all allele frequencies.

Although mathematically convenient, linear fitnesses
arise naturally when individual fitness is determined via
random pairwise, between-species interactions (e.g., Hof-
bauer and Sigmund 1988; Gavrilets 1997), including
matching-alleles and gene-for-gene interactions (e.g.,
Frank 1994). In particular (6) and (7) correspond to av-
erage genotypic fitnesses assuming a matching-alleles
model in which alleles X1 and Y1 are “matched” as are
alleles X2 and Y2. To wit, if the fitness payoff to X1 is

in an interaction with Y1 but is 1 in an interaction1 1 a
with Y2, then (6a) equals the average payoff to X1 when
the frequency of Y1 is y, assuming random encounters.
The remaining fitnesses (6) and (7) may be derived anal-
ogously from random pairwise interactions.

Even with simplified fitnesses such as (6) and (7), the
general model (5) is complicated enough that a compre-
hensive mathematical analysis would be impractical. Since
our primary aim is to explore the potential impact of gene
flow between hot and cold spots on global evolutionary
dynamics, we will analyze a representative subset of the
migratory schemes shown in figure 1. To explore the qual-

itative features of (5), our strategy will be to first analyze
two comparatively “extreme” cases in which gene flow
within a species is either completely absent or completely
unrestricted (fig. 1E). We then analyze three relatively in-
termediate cases, two of which address the coevolutionary
effects of asymmetric migration (fig. 1A, 1B), while the
third considers restricted levels of gene flow (fig. 1F).

Isolated Hot and Cold Spots

We begin with the biologically and mathematically simplest
case: a geographic mosaic consisting of mutually isolated
coevolutionary hot and cold spots. Imagine, for example,
a symbiont that is commensalistic with its host in one
closed population but antagonistic or mutualistic in an-
other. Our main purpose in considering this case is to
establish a baseline with which to compare subsequent
cases.

Consider first the coevolutionary dynamics of X and Y
in a closed hot spot. These dynamics are described by (5a)
and (5c) with . GivenX X Y Ym = m = m = m = 0CrH HrC CrH HrC

symmetric linear fitnesses (6) and (7), five equilibrium
allele frequency pairs are possible (Seger 1988).ˆ ˆ(x , y )H H

Four “corner” equilibria correspond to hot spot mono-
morphisms, involving either fixed matched alleles, x̂ =H

and , or fixed mismatched alleles,ˆ ˆ ˆy = 0 x = y = 1H H H

and . The fixed matched al-ˆ ˆ ˆ ˆx = 0, y = 1 x = 1, y = 0H H H H

leles equilibria are locally stable when the interaction is
mutualistic (i.e., when and ; fig. 2A) and area 1 0 b 1 0
unstable otherwise. Monomorphic equilibria with mis-
matched alleles are stable whenever the interaction is com-
petitive ( and ) and unstable otherwise. At thea ! 0 b ! 0
fifth equilibrium, both species are polymorphic with

(due to symmetry), however, this equilib-ˆ ˆx = y = 1/2H H

rium is always unstable.
When all four corner equilibria are unstable, as with

exploiter-victim interactions ( , or , ),a 1 0 b ! 0 a ! 0 b 1 0
the species coevolve arbitrarily closely toward monomor-
phisms in which one or both species are genetically fixed
(Seger 1988; see fig. 2B). Consequently, if population sizes
were finite, all genetic variation would ultimately be lost
in both species. The particular alleles that become fixed
or lost would be unpredictable.

In closed cold spots, the evolutionary dynamics of X
depend entirely on those of Y, whereas the evolution of Y
is unaffected by X. If allele frequencies in Y are fixed, then
fitnesses in X will also be fixed and X, being haploid, will
evolve toward a monomorphism that maximizes local
fitness.

These results provide two main predictions for isolated
hot and cold spots. First, closed hot spots do not support
local polymorphisms in either species, and local genetic
variation in species X will not be maintained in closed
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Figure 2: Coevolutionary dynamics in closed hot spots. Left-hand panels show evolutionary trajectories of hot spot allele frequencies xH and yH;
right-hand panels display the same dynamics using phase portraits (the arrows indicate directions of coevolution from the initial frequencies). Closely
spaced (widely spaced) points in the phase portrait correspond to slow (rapid) coevolution. Simulations are based on equations (5a) and (5c) with

and linear fitnesses (eqq. [6] and [7]). A, Hot spot mutualism: . B, Hot spot antagonism: ,X X Y Ym = m = m = m = 0 a = b = 0.5 a = 20.5CrH HrC CrH HrC

.b = 0.5

cold spots (“local monomorphisms”). Second, hot and
cold spots when mutually isolated can exhibit substantial
intraspecific genetic differentiation at a global scale (“geo-
graphic differentiation”). Morand et al. (1996) drew a sim-
ilar conclusion when analyzing a geographically structured
model of host-parasite coevolution that assumed no gene
flow between separate hot spots. In the cases to follow,
we will consider how gene flow between hot and cold spots
affects these two “null” predictions.

Unlimited Gene Flow in Both Species

We now examine how gene flow affects coevolution across
a geographic mosaic by considering the opposite extreme
of the previous section: unlimited gene flow in both species
between hot and cold spots (fig. 1E). As an example of
this case, recent work on two species of yucca and yucca
moths has shown little phylogeographic structure through-
out the southwestern United States, potentially indicating
extensive gene flow among populations in this interaction

(Leebens-Mack et al. 1998). We assume X Ym = m =HrC HrC

and , which implies that allele fre-X Y1 2 h m = m = hCrH CrH

quencies within a species are the same in hot and cold
spots at the beginning of each generation. Equations (5a)
and (5b) are then redundant—as are (5c) and (5d)—so
we let and denote the respectivex = x = x y = y = yC H C H

(geographically uniform) frequencies of alleles X1 and Y1

at the zygote stage. Unlike the case of isolated hot and
cold spots, spatial genetic structuring is precluded within
species by assumption (at least at the zygote stage). Hence,
our main concern in this section lies with how the gene
flow between hot and cold spots affects the maintenance
of monomorphisms and polymorphisms in one or both
species.

Hard Selection

If both X and Y are subject to hard selection (4), the
general recursions (5) condense to the following pair of
equations:
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Table 2: Symmetric fitness parameter
values consistent with local stability

Equilibrium Stability condition

,ˆ ˆx = 0 y = 0 ,a 1 0 b 1 s 1/h 2 1( )
,ˆ ˆx = 1 y = 1 ,a 1 0 b 1 2s 1/h 2 1( )
,ˆ ˆx = 0 y = 1 ,a ! 0 b ! s 1/h 2 1( )
,ˆ ˆx = 1 y = 0 ,a ! 0 b ! 2s 1/h 2 1( )

Note: Values consistent with local stability

of the four corner equilibria for unlimited mi-

gration in both species (eqq. [8]).

V (y)1′x = x , (8a)
V(x, y)

W̃ (x)1′y = y , (8b)[ ]˜ ˜ ( )yW (x) 1 (1 2 y)W x1 2

where the mean fitness is defined in (2a) andV(x, y)
is the average fitness of alleleW̃ (x) = hW(x) 1 (1 2 h)Qi i i

Yi across hot and cold spots. Recursion (8a) underscores
that selection on species X is geographically uniform. In
fact, equation (8a) describes hard or soft selection in spe-
cies X because X must experience exactly the same selec-
tion in hot and cold spots.

Assuming fitnesses (6) and (7), the dynamical system
(8) has, like an isolated hot spot, four monomorphic cor-
ner equilibria with either matched alleles ( andˆ ˆx = y = 0

) or mismatched alleles ( andˆ ˆ ˆ ˆ ˆx = y = 1 x = 0, y = 1 x =
). There is a fifth polymorphic equilibrium atˆ1, y = 0

which and , whereˆ ˆx = [1 2 (1/h 2 1)(s/b)]/2 y = 1/2 s =
is the coefficient of selection favoring allele Y1 inQ 2 Q1 2

cold spots. (Note that b, which is the rate at which the
fitness of Yi changes with x in hot spots, is akin to a
selection coefficient.) The polymorphic equilibrium is bio-
logically feasible only for certain combinations of the pa-
rameters h, b, and s. Even then, local stability analysis (e.g.,
Hale and Koçak 1991) reveals that this equilibrium is al-
ways unstable. By comparison, the four monomorphic
equilibria may be locally stable or unstable. Consider, for
example, the matched equilibrium at which spe-ˆ ˆx = y = 1
cies X is fixed for allele X1 and Y is fixed for Y1. It is not
difficult to show that this monomorphism is locally stable
if

1
a 1 0 and b 1 2s 2 1 . (9)( )h

It is interesting to compare (9) with the stability criterion
for the same monomorphism in an isolated hot spot,
which is, as discussed above, and (i.e., anya 1 0 b 1 0
mutualism). In fact, if , then (9) reduces to the iso-h = 1
lated hot spot stability criterion as it should.

If hot spots are not ubiquitous ( ) and Y1 is dele-h ! 1
terious in cold spots ( ), a hot spot mutualism mights ! 0
not suffice to stabilize a monomorphism with matched
alleles if b is too small. This is because benefits to Y1 of
the mutualism in hot spots fail to compensate for the
allele’s deleterious effects in cold spots. In this sense, the
presence of cold spots restricts the local conditions under
which monomorphisms are evolutionarily stable com-
pared to an isolated hot spot. Finally, note that if s ! 0
and the hot spot mutualism was sufficiently strong to sat-

isfy (9), then species Y would have minimal mean fitness
in cold spots at an evolutionarily stable equilibrium.

If, in contrast, Y1 were favored in cold spots ( ),s 1 0
then may be stable when and . In thisˆ ˆx = y = 1 a 1 0 b ! 0
situation, species Y is harmed by allelic matches with X
in hot spots, but X always benefits from matches with Y.
If we think of Y as a host and X as a parasite and equate
fitness with resistance and virulence, respectively, then this
matched monomorphism would correspond to a stable
equilibrium in which the host has minimal resistance in
hot spots and the parasite has maximal virulence. Species
Y would have minimal fitness in hot (rather than cold)
spots at equilibrium. Since fixed matches are always un-
stable in closed hot spots given antagonistic interactions,
(9) indicates that gene flow between hot and cold spots
can expand the conditions that stabilize the monomor-
phism. Similar comments apply to the other three mono-
morphic equilibria (see table 2).

For certain values of h, s, a, and b, the four corner
equilibria may all be unstable. For example, all mono-
morphic equilibria are unstable if the Y1 allele is favored
in cold spots ( ) and X and Y have an exploiter-victims 1 0
interaction in hot spots such that Y is “overexploited”:

and (see table 2). However, insta-a 1 0 b ! 2s(1/h 2 1)
bility of all monomorphic equilibria does not ensure that
a polymorphism will evolve. Indeed, our numerical studies
suggest that the species coevolve arbitrarily near one- and
two-species monomorphisms, which implies that all ge-
netic variation would ultimately be lost in both species.
Recall that this was also the case for an isolated hot spot
(fig. 2B). Thus, gene flow between hot and cold spots will
not maintain genetic variation in either species, at least
not under hard selection.

Soft Selection

In contrast to hard selection, genetic variation can be
maintained if species Y is subject to soft selection. With
soft selection (eq. [3]), recursion (8b) is replaced by
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W (x)1′y = y h[ yW (x) 1 (1 2 y)W (x)1 2

Q11 (1 2 h) . (8b ′)]yQ 1 (1 2 y)Q1 2

By setting and in (8a) with (8b′), it is possible′ ′x = x y = y
to show there is a polymorphic equilibrium with ŷ = 1/2
and

ˆ1 1 s/W
x̂ = 1 2 2 1 ,( ) ˆ( )[ ]2 h b/Q

where and are the local equi-ˆŴ = 1 1 b/2 Q = (Q 1 Q )/21 2

librium mean fitnesses of species Y in hot and cold spots,
respectively, and as above. The expression fors = Q 2 Q1 2

is similar to that for hard selection, except that, in thisx̂
case, the selection coefficients, s and b, are normalized by
local mean fitnesses. This normalization traces back to the
local density regulation implicit in soft selection. (Indeed,
the equilibria for hard and soft selection are identical if
mean fitnesses in hot and cold spots are the same: Ŵ =

.) It is straightforward to demonstrate that this poly-Q̂

morphic equilibrium can be locally stable under biologi-
cally reasonable conditions. In addition, one may prove
by applying the Poincaré-Andronov-Hopf bifurcation the-
orem for maps (e.g., Hale and Koçak 1991, p. 474) that
the species can coevolve to stable limit cycles (i.e., per-
manent, but unstable, polymorphisms) for certain param-
eter combinations. Thus, polymorphisms are possible in
both species given soft selection in Y.

Under soft selection, gene flow between hot and cold
spots can support genetic polymorphisms in both species
provided that hot spots are sufficiently—but not
too—common. Figure 3 shows a series of coevolutionary
simulations that assume soft selection in which species X
is the victim ( ) and Y is its exploiter ( ) in hota ! 0 b 1 0
spots. The simulations differ only in the hot spot fraction
h. All plots assume and , in which caseQ = 1 s = 2b ! 01

so that allele X1 will become fixed ifx̂ = 1/(2h) h ≤ 0.5
(fig. 3A). For values of h slightly above 0.5, a stable poly-
morphism is maintained in both species (fig. 3B, 3C). For
values of h above the bifurcation value (a valueh ≈ 0.6320

specific to the assumed parameters), cyclical polymor-
phisms evolve (fig. 3D, 3E). However, when h is large, the
coevolutionary cycles pass very close to the boundaries

and so polymorphisms would not be preserved in finite
populations (fig. 3F). The same range of qualitative dy-
namics holds across a broad range of parameter values and
initial conditions, although stable polymorphisms occur
within smaller ranges of h as selection weakens (simulation
results not shown). (Note that genetic variation would be
lost for all the parameter sets assumed in fig. 3 given hard
selection.)

Our results show that soft selection in species X is nei-
ther necessary nor sufficient for the coevolution of poly-
morphisms. Recall that recursion (8a) is exactly the same
for hard and soft selection in species X because selection
on X is spatially uniform. Therefore, polymorphisms may
be maintained whenever species Y is subject to soft selec-
tion—even if X experiences hard selection. Alternatively,
if selection is soft for X but hard for Y, both species become
monomorphic. Hence, the coevolutionary potential for ge-
netic polymorphisms depends entirely on the ecological
dynamics of species Y (local density regulation implied by
soft selection versus global regulation implied by hard se-
lection) but not on those of X.

Overall, we found that gene flow can either restrict or
expand the conditions under which local monomorphisms
are evolutionarily stable compared to isolated hot spots.
Gene flow can maintain monomorphic coevolutionary
equilibria at which one species is maximally maladapted
in part of its range. In contrast to isolated hot and cold
spots, local genetic polymorphisms may be maintained
with gene flow but only given soft selection in species Y.

Unrestricted Gene Flow in One Species

Species X Philopatric

We now consider the coevolutionary dynamics of our two
species when Y moves without limitation between hot and
cold spots, while X is philopatric (fig. 1B). This scenario
would represent, for example, a highly mobile host that
interacts with locally restricted populations of symbionts
that affect host fitness in some habitats but not others.
This case is identical to the last section except that the
migration parameters for X are , andX Xm = m = 0HrC CrH

separate equations are needed to track species X allele
frequencies in hot and cold spots. As before, allele fre-
quencies in the mobile species Y are always the same in
hot and cold spots at the zygote stage. This again allows
us to follow just the shared frequency , whichy = y = yH C

eliminates one of the general recursions (5). For hard se-
lection (4b), coevolution is described by the three equa-
tions
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V (y)1′x = x , (10a)H H
V(x , y)H

V (y)1′x = x , (10b)C C
V(x , y)C

W̃ (x )1 H′y = y , (10c)˜ ˜yW (x ) 1 (1 2 y)W (x )1 H 2 H

where is again the averageW̃ (x ) = hW(x ) 1 (1 2 h)Qi H i H i

fitness of Yi across hot and cold spots and is asV(x , y)i

defined in (2). Notice that the joint evolutionary dynamics
of y and xH (eqq. [10a] and [10c]) are independent of xC.
The coevolutionary dynamics of (10) must therefore be
driven completely by the pair of recursions, (10a) and
(10c), while xC evolves solely in response to changes in y
(eq. [10b]). (This remark also holds for soft selection.)
Moreover, by replacing xH with x, one can see that the
system (10a) and (10c) is mathematically identical to (8).
Both coevolutionary systems, thus, share identical dynam-
ical features, including equilibria, stability, and limit cycles.
Hence, species Y may minimize its local mean fitness at
a stable monomorphic equilibrium. Moreover, polymor-
phisms will not evolve or be maintained in hot spots if
species Y is subject to hard selection, whereas stable and
cyclical polymorphisms can be maintained provided soft
selection obtains in species Y (see below). Thus, gene flow
in just species Y can be sufficient for hot spot polymor-
phisms to coevolve.

In contrast to the case of completely isolated hot and
cold spots, we found in this case that the genetics of an
isolated species (X) will not be geographically structured
at evolutionary equilibrium. (Y is geographically uniform
at the zygote stage, by assumption.) First, consider hard
selection in Y. As shown in the last section, the only locally
stable equilibria for the system (10a) and (10c) are the hot
spot monomorphisms, such as andˆ ˆ ˆx = y = 1 x =H H

. The only equilibria for X in cold spots areˆ0, y = 1
, and . Hence, any geographic structuring inˆ ˆx = 0 x = 1C C

X must involve fixed genetic differences between hot and
cold spots. Fixed genetic differences between hot and cold
spots, however, cannot be maintained in species X given
hard selection in Y. That is, equilibria with , andx̂ = 0H

or with and cannot be evolutionarilyˆ ˆ ˆx = 1 x = 0 x = 1C H C

stable if Y is subject to hard selection. Indeed, local stability
analyses reveal that such fixed differences are always
unstable.

When Y is subject to soft selection, local polymorphisms
in y and xH can be maintained. The recursions for soft
selection are identical to those of (10) except that (10c)
is replaced by

W (x )1 H′y = y h[ yW (x ) 1 (1 2 y)W (x )1 H 2 H

Q11 (1 2 h) . (10c ′)]( )yQ 1 1 2 y Q1 2

This equation is identical to (8b′) with x replaced by xH.
Equilibria for species X in cold spots continue to include
only the monomorphisms , and . At least oneˆ ˆx = 0 x = 1C C

of these two local monomorphisms will be stable unless
y and xH coevolve to a limit cycle. Biologically, this means
that even with soft selection, a stable equilibrium with both
species locally polymorphic in hot and in cold spots is
impossible. However, permanent polymorphisms may be
maintained in both species within both habitat types if y
and xH coevolve to a limit cycle. In this case, first one and
then the other allele in species X will be favored in cold
spots as y varies. The fluctuating allele frequencies in X
will tend to differ among hot and cold spots at any given
time (unless , initially; see fig. 4).x = xH C

In general, then, complete isolation of both interacting
species is not a prerequisite for maintaining spatial vari-
ation in allele frequencies. However, unlimited migration
in Y apparently precludes the evolution of stable spatial
genetic differences in X. In the next section, we consider
whether these conclusions hold when Y is the isolated
species.

Species Y Philopatric

We now imagine that species X has unlimited access to
hot and cold spots, but Y does not migrate (fig. 1A). This
scenario might represent, for example, a highly mobile
insect herbivore (X) that interacts with a nondispersing
plant host (Y). This case is modeled by setting Xm =HrC

, , and in equations (5).X Y Y1 2 h m = h m = m = 0CrH HrC CrH

At the start of each generation, allele frequencies in X are
the same in hot and cold spots, in which case equations
(5a) and (5b) are redundant. Let denote thex = x = xH C

frequency of X1 among zygotes. Because Y does not dis-
perse, we assume the frequency of Y1 has already reached
a fixed genetic equilibrium in cold spots, (a con-y = wC C

stant between 0 and 1, inclusive), rather than follow its
transient dynamics. Under these conditions, equation (5d)
is unnecessary, and the complete coevolutionary dynamics
are, thus, described by two equations. The complete co-
evolutionary dynamics are consequently described by (as-
suming hard selection in species X)
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Figure 3: Coevolutionary dynamics for increasing proportions of hot spots (h) assuming unlimited migration and soft selection in both species.
Simulation results (displayed as phase portraits for 1,500 generations) are based on (8) and assume fitnesses ([6] and [7]) with , ,a = 20.5 b = 0.5

, and . All cases start from , . Arrows indicate directions of coevolution from the initial condition.Q = 1 Q = 1.5 x = 0.5 y = 0.51 2 0 0

Ṽ (y , w )1 H C′x = x , (11a)˜ ˜xV (y , w ) 1 (1 2 x)V (y , w )1 H C 2 H C

W (x)1′y = y , (11b)H H
W(x, y )H

where is the averageṼ (y , w ) = hV(y ) 1 (1 2 h)V(w )i H C i H i C

fitness of allele Xi across hot and cold spots.
Analysis of this case is similar to those of the last two

sections. With fitnesses (6) and (7), there are four corner
equilibria corresponding to hot spot monomorphisms and
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Figure 4: The influence of initial conditions on coevolutionary dynamics, assuming no migration in species X and soft selection in Y. Simulation
results are based on equations (10) and (10c′) and assume linear fitnesses with , , , , and . Left-hand panels:a = 20.5 b = 0.5 Q = 0.7 Q = 1 h = 0.651 2

coevolutionary dynamics over 1,000 generations displayed as three-dimensional phase portraits; arrows show directions of coevolution from the
initial condition. Right-hand panels: joint evolutionary trajectories of xH and xC for generations 900–1,000. A, , , ; xCx = 0.9 x = 0.05 y = 0.9H,0 C,0 0

remains smaller than xH. B, , ; species X allele frequencies in hot and cold spots remain identical. C, , ,x = x = 0.9 y = 0.9 x = 0.1 x = 0.5H,0 C,0 0 H,0 C,0

; xC tends to be larger than xH.y = 0.10

an unstable polymorphic equilibrium with ,ˆ ˆx = 1/2 y =H

, and . The equilibria with mono-ˆw 1 (1/2 2 w )/h y = wC C C C

morphic hot spots may be locally stable or unstable. For
example, the matched equilibrium with is lo-ˆ ˆx = y = 0H

cally stable if either

a 1 0, b 1 0, and h 1 1 2 1/(2w ) (12a)C

or

a ! 0, b 1 0, and h ! 1 2 1/(2w ). (12b)C
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If either condition held when , then spatially struc-w 1 0C

tured genetic variation could be stably maintained in Y
since we would then have . This resultˆ ˆy = 0 ( y = wH C C

differs from the previous case in which geographically di-
vergent patterns of genetic variation could not evolve un-
der hard selection.

Parallel to the previous two cases, it is possible to show
that local polymorphisms cannot be maintained in X un-
der hard selection. One may also prove that genetic var-
iation can be maintained if species X is subject to soft
selection. With soft selection (eq. [3]), recursion (11a) is
replaced by

V (y )1 H′x = x h[ xV (y ) 1 (1 2 x)V (y )1 H 2 H

V (w )1 C1 (1 2 h) (11a ′)]xV (w ) 1 (1 2 x)V (w )1 C 2 C

Combining (11a′) with (11b), it is not difficult to show
that there is a polymorphic equilibrium given by ,x̂ = 1/2
and . This equilibrium is the sameŷ = w 1 (1/2 2 w )/hH C C

as for hard selection, except that with soft selection, the
polymorphism can be locally stable. It is possible to verify,
as in the previous two cases, that the species can coevolve
to stable limit cycles for certain parameter combinations.
Thus, polymorphisms in both species are possible given
soft selection in X. This conclusion is unexpected given
the results of the previous cases, which implied that soft
selection in Y is necessary for the maintenance of local
polymorphisms in hot spots, whereas soft or hard selection
in X is irrelevant. Apparently, soft selection in X is relevant
to maintaining local polymorphisms but only when Y does
not move between hot and cold spots. The underlying
reason is that geographic divergence in Y produces spa-
tially variable selection in X, which in turn can maintain
polymorphisms in X.

The results of this and the previous section clearly es-
tablish that gene flow in just one species can ensure the
establishment of local polymorphisms. They also show that
gene flow will not necessarily eliminate stable patterns of
spatial variation in allele frequencies across hot and cold
spots.

Limited Gene Flow in Both Species

We now relax the assumption that gene flow between hot
and cold spots is completely unlimited when it occurs and
consider restricted migration between hot and cold spots
(fig. 1F). The general coevolutionary dynamics in this sit-
uation are described by equations (5). Rather than provide
a comprehensive analysis, we use results from the previous

four sections to develop an intuition for the qualitative
dynamics of this intermediate case.

We consider first how small levels of gene flow alter
coevolutionary outcomes from those observed when one
or both species is completely isolated in hot and cold spots.
One can predict the effects of weak migration using Karlin
and McGregor’s “small-parameters” argument (Karlin and
McGregor 1972a, 1972b). Their argument implies that suf-
ficiently low levels of gene flow will not alter the stability
of any polymorphic equilibrium that is present with gene
flow absent, although the weak migration may displace the
equilibrium slightly. For example, because stable poly-
morphic equilibria are possible given unlimited migration
and soft selection in Y, when species X forms closed pop-
ulations in hot and cold spots, stable polymorphic equi-
libria would still exist if a few individuals of X migrated
between patches. In addition, the small-parameters ar-
gument implies that if both species were completely iso-
lated in hot and cold spots (i.e., our first case) and if both
were stably fixed for alternate alleles in the two habitats,
then weak coupling would introduce only slight poly-
morphisms to hot and cold spots. Numerical simulations
support the small-parameters reasoning and show further
that if stable limit cycles are present without gene flow in
one species, they will also occur with weak gene flow pre-
sent in that species (see below).

Higher, but still restricted, levels of gene flow may sig-
nificantly modify the overall coevolutionary dynamics.
Consider for instance the relatively simple case in which
species Y does not migrate while X moves between hot
and cold spots, but with some limitation. In particular
assume in (5) and, for simplicity, thatY Ym = m = 0CrH HrC

gene flow rates in species X are geographically symmetric,
that is, . Finally, assume that the fre-X Xm = m = mCrH HrC

quency of allele Y1 is held fixed at wC in cold spots, which
leaves only xC, xH, and yH as variables. This model is bi-
ologically similar to (11) except for the restricted migration
in X. As discussed in the last section, stable and cyclical
polymorphisms can occur for (11) given soft selection in
X. To allow for potentially new stable polymorphisms, as-
sume soft selection holds for the current case, that is, set

in equations (5a) and (5b). These assumptions lead∗h = hX

to the following system of recursions:

∗ ∗x h(1 2 m) 1 x (1 2 h)mH C′x = , (13a)H h(1 2 m) 1 (1 2 h)m

∗ ∗x hm 1 x (1 2 h)(1 2 m)H C′x = , (13b)C hm 1 (1 2 h)(1 2 m)

W (x )1 H′y = y , (13c)H H
W(x , y )H H
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Figure 5: Effect of gene flow (m) on coevolutionary dynamics (displayed as phase portraits for 1,000 generations). Simulation results are based on
equations (13) and assume linear fitnesses with , , , and . All simulations start from the initial condition ,a = 20.2 b = 0.2 h = 0.8 w = 0 x = 0.5C H,0

, ; arrows indicate directions of coevolution from the initial condition. With increasing m, the long-term coevolutionary dynamicsx = 0.05 y = 0.05C,0 0

lie increasingly close to the plane .x = xC H

with postselection frequencies ∗x = x V (y )/V(x , y )H H 1 H H H

and .∗x = x V (w )/V(x , w )C C 1 C C C

When fitnesses are linear (eqq. [6] and [7]) and selection
is antagonistic in hot spots ( , ), small values ofa ! 0 b 1 0
m lead to the coevolution of monomorphisms, whereas
larger values maintain polymorphic limit cycles (fig. 5).
Note that for all cases shown in figure 5, so X1 isw = 0C

consistently favored in cold spots because its matching
allele (Y1) is absent. When (fig. 5A), the speciesm = 0
coevolve toward local monomorphisms in both hot and
cold spots. With a small amount of migration ( ,m = .001
fig. 5B), both species approach monomorphisms in both

locations, confirming the small-parameters argument
above. At even higher levels of migration (fig. 5C–5F),
cyclical polymorphisms develop in both species. Note that,
as m is increased, species X allele frequencies in hot and
cold spots become increasingly similar. This is evident in
figure 5 where the system dynamics tend increasingly to
occur along the 457 plane for increasing values ofx = xH C

m. That is, coevolutionary dynamics amid high (but lim-
ited) gene flow resemble those that assume completely
“unlimited” dispersal in X since in the latter case, x =H

by assumption (see eqq. [11a′] and [11b]).x = xC

Nuismer et al. (1999) demonstrated that symmetric mi-
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gration has a homogenizing effect on the dynamics of
coupled hot spots that experience different patterns of
interspecific selection. In addition, they showed that the
form of homogenized dynamics can be predicted from
asymmetries in the strengths of local selection: long-term
local dynamics in both patches resemble those of an iso-
lated species pair coevolving in the more strongly selected
patch. These qualitative properties extend to coupled hot
and cold spots. Figure 6 shows an example of the full
system (5) in which both species’ gene flow parameters
are the same and symmetric ( X X Ym = m = m =CrH HrC CrH

). In isolation ( ), allele frequencies even-Ym = m m = 0HrC

tually alternate between near fixation or near loss in hot
spots, whereas in cold spots, allele frequencies approach a
definite fixed equilibrium (fig. 6A). If gene flow is mod-
erate ( ) and selection is potentially stronger in hotm = 0.1
than cold spots, then local dynamics in both hot and cold
spots qualitatively resembles the dynamics of an isolated
hot spot (compare both panels of fig. 6B to the left-hand
panel of fig. 6A). Alternatively, if selection is stronger in
cold than hot spots, the asymptotic (if not the transient)
dynamics in both habitat types resembles the asymptotic
dynamics of an isolated cold spot in that a definite equi-
librium is approached (compare fig. 6C to the right-hand
panel of fig. 6A). These examples illustrate how gene flow
tends to allow localities with stronger selection to dominate
global coevolutionary patterns.

Finally, simulations of the full system (5) with limited
gene flow indicate that the effects of intermediate levels
of migration on the overall dynamics of both species in
hot and cold spots resembles the simpler cases in which
gene flow is completely unrestricted or completely absent.
This suggests that the simpler cases we analyzed (such as
eqq. [8], [10], and [11]) are broadly representative of the
qualitative dynamics of more complex systems in which
hot and cold spots are only partially coupled by migration.
In particular, numerical simulations suggest that poly-
morphisms are always possible given soft selection in Y,
even if X is subject to hard selection at all gene flow rates
(as anticipated by our analyses of [8] and [10]). By con-
trast, soft selection in X allows polymorphisms given hard
selection in Y only if gene flow in Y is weak (as expected
from analyses of [8] and [11]; see fig. 7). This implies that
the potential for polymorphism depends not only on soft
selection but also on which species is subject to soft
selection.

Discussion

Coevolution at broad geographic scales is influenced by
two fundamental features: interacting species tend to be
distributed in open populations and fitness interactions
between species vary in type and extent across space

(Thompson 1994). Our aim here was to develop and an-
alyze formal models of coevolution between two species
that jointly occupy a geographic range over which fitness
interactions vary. In part of the range (hot spots), the
species have reciprocal impacts on each other’s fitness,
while in other regions (cold spots), one species is com-
pletely unaffected by the other. Our analyses have revealed
that, with gene flow, hot spots can significantly affect evo-
lutionary dynamics in cold spots, and vice versa. Hence,
patterns of local adaptation, which have been a focus of
much recent research on evolving interactions (see Kaltz
and Shykoff 1998; Mopper and Strauss 1998 for reviews),
can be strongly shaped by the mix of coevolutionary hot
and cold spots.

The results here show that the allocation of hot and
cold spots affects the evolutionary stability of equilibria at
which both species are monomorphic (e.g., see table 2).
If the interacting species are mutualists in hot spots, then
fixed matched alleles can be maintained, provided the frac-
tion of hot spot habitat is suitably large. Hence a species
with maximal fitness in hot spots can be evolutionarily
stable even if it has a minimal fitness in cold spots. Our
analyses also indicate that matched and mismatched hot
spot monomorphisms can be evolutionarily stable under
mutualistic or antagonistic conditions (see table 2). It
seems likely, however, that some of these genetic equilibria
will be demographically unstable if local interactions are
antagonistic. However, a species may be demographically
sustained when negatively impacted in hot spots if it es-
capes harmful interspecific effects in cold spots. In this
way, sufficiently frequent cold spots could be largely re-
sponsible for evolutionary changes in a species.

We found that gene flow allows genetic variation to be
maintained in both species under some conditions (see
figs. 3–7). In our models, this requires that one migrating
species be subject to “soft selection,” which implies that
its population size is regulated on a local scale. The po-
tential for polymorphism, however, can depend on which
species is subject to soft selection. We found that poly-
morphisms can result given soft selection in species Y for
any pattern of gene flow in X. Alternatively, polymor-
phisms cannot be sustained given soft selection in X if Y
is subject to hard selection, unless gene flow in Y is weak.
Since hard and soft selection imply different types of pop-
ulation size regulation (global vs. local), this result high-
lights the critical and asymmetric role played by population
dynamics in maintaining coevolving interactions. It also
produces the perhaps surprising prediction that asym-
metries in species’ intrinsic ecologies may be just as (and
at times more) important as asymmetries in gene flow for
generating ongoing coevolution.

Our studies also show that coevolutionary trajectories
depend separately on the rate of gene flow and strength
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Figure 6: Impact of the strength of local selection on coevolutionary dynamics. Left-hand panels show phase portraits of coevolutionary dynamics
in hot spots; right-hand panels show the associated evolutionary dynamics in cold spots. The simulations are based on equations (5) with linear
fitnesses assuming . All start from the same initial condition ( , ) and proceed in directions indicated by the arrows.h = 0.8 x = x = 0.5 y = 0.9H,0 C,0 C,0

A, Dynamics in isolated hot and cold spot habitats for 2,000 generations, assuming , , , , and . B, Moderate genem = 0 a = 20.2 b = 0.2 Q = 0.9 Q = 11 2

flow with interspecific selection tending to be stronger in hot spots: , , , , and (i.e., ). Allele frequenciesm = 0.1 a = 20.2 b = 0.2 Q = 0.9 Q = 1 s = 20.11 2

tend toward monomorphisms; 2,000 generations of coevolution are shown. C, Moderate gene flow and interspecific selection tending to be weaker
in hot spots: , , , , and (i.e., ). Allele frequencies converge to a polymorphic equilibrium; 4,000m = 0.1 a = 20.1 b = 0.1 Q = 0.8 Q = 1 s = 20.21 2

generations of coevolution are shown.
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Figure 7: Effect of migration (m) on coevolutionary polymorphisms with interspecific asymmetries in density regulation (i.e., soft vs. hard selection).
Simulation results (displayed as three-dimensional phase portraits for 1,000 generations) are based on equations (5) and assume linear fitnesses with

, , , , and . Species Y has symmetric limited migration ( ) and is subject to hard selectionY Ya = 20.5 b = 0.5 h = 0.7 Q = 0.94 Q = 1 m = m = m1 2 HrC CrH

(eq. [4b]). Species X has unlimited gene flow and soft selection so ; the dynamics of X are described by recursion (11a′) with wC replacedx = x = xC H

by yC. All simulations are initiated at , , and proceed as shown by the arrows. With low migration, , while x andx = 0.5 y = 0.5 y = 0.99 y r 0H,0 C,0 C

yH remain polymorphic. As migration increases, yH and yC converge as both species coevolve increasingly toward monomorphisms.

of selection. The results are consistent with other theo-
retical work on geographically structured coevolution
(Hochberg and van Baalen 1998; Nuismer et al. 1999). In
particular, we found that weak migration does little to alter
the coevolutionary dynamics of hot and cold spots from
the dynamics that would be attained in isolation. With
stronger (but limited) migration, asymmetries in the
strength of local selection can drive the global coevolu-
tionary dynamics. That is, the global coevolutionary dy-
namics tend to resemble the asymptotic dynamics that
would occur in the habitat type experiencing the stronger
selection (hot or cold spot) if it were closed (fig. 6). Our
results demonstrate that local coevolutionary hot spots can
strongly influence evolutionary dynamics in neighboring
cold spots and vice versa.

Many of our analyses and results were based on models

that assumed linear symmetric fitnesses (eqq. [6] and [7]).
However, the same range of qualitative dynamical features
described above could potentially occur for any fitnesses
that are linear functions of interspecific allele frequencies
(R. Gomulkiewicz, unpublished results). As explained pre-
viously, linear symmetric fitnesses arise naturally from
matching-allele systems of interspecific interactions. Gene-
for-gene interactions, which are another important genetic
model of interactions for agricultural and other systems,
lead to linear “asymmetric” fitnesses. It turns out that
polymorphisms will not evolve given gene-for-gene inter-
actions for any of the special cases analyzed above (al-
though polymorphisms can evolve given other types of
asymmetric linear fitnesses; R. Gomulkiewicz, unpublished
results).

Our conclusions are based on models that assume rel-
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atively simple life histories, genetics, interspecific inter-
actions, and geographic structuring. Their main value lies
in revealing general features of spatially structured co-
evolution. We anticipate that similar qualitative features
will hold for models based on more complex life-history
and genetic assumptions, provided evolutionary forces
such as mutation and random genetic drift are weak com-
pared with selection. Of course, we also expect more com-
plicated models to reveal novel coevolutionary features.
For example, polymorphisms coevolve more readily in
closed hot spots when mutation is significant or when
interactions are affected by multiple alleles (Seger 1988).
Moreover, simultaneously stable polymorphic equilibria
are possible in closed hot spots when the basis of selection
is diploid or polygenic (see Gavrilets 1997; Gavrilets and
Hastings 1998). Multilocus models of closed populations
show an even more tremendous range of coevolutionary
dynamics (Seger 1988). It is unlikely that adding geo-
graphic structure to these closed-population models would
shrink the possible types of coevolutionary outcomes. In-
deed, we expect just the opposite (e.g., the dynamics of
linkage disequilibrium would be affected not just by se-
lection but by migration as well).

There are several potentially important ecological fac-
tors that would doubtless affect our results. For example,
the overall influence of hot spots may be modulated con-
siderably by the explicit spatial configuration of selection
mosaics (S. L. Nuismer, J. N. Thompson, and R. Go-
mulkiewicz, unpublished manuscript) or other aspects of
spatial structure (Judson 1995; Lively 1999; Parker 1999).
Our model assumes that interacting species are distributed
among hot and cold spots in the same proportions. How-
ever, differences in how each species is explicitly spread
among habitats could alter the coevolutionary patterns we
found. Finally, some of the long-term coevolutionary out-
comes that are possible in our models (such as stable
antagonistic interactions; e.g., table 2) may be overridden
by density effects (Holt et al. 1999) or extinction (Gandon
et al. 1996). In fact, the transient dynamics of the coe-
volutionary process (such as shifting degrees of matching
and mismatching of traits) may themselves have important
influences on the short-term ecological dynamics of in-
teracting species (Thompson 1998, 1999). These issues
warrant further investigation.

In a broader sense, we have extended single-species ge-
netic models of spatially variable selection (reviewed in
Felsenstein 1976; Hedrick et al. 1976; Hedrick 1986) to
pairs of interacting species. Our results show that many
major features of spatially variable selection ascertained
from one-species models also hold for geographically var-
iable species interactions, such as the well-known principle
that genetic polymorphisms occur under a wider range of
conditions for soft selection than for hard selection (Chris-

tiansen 1975). A second shared attribute is that the evo-
lutionary potential for polymorphisms increases with the
strength of local selection (Hedrick 1986).

With the basic components of the geographic mosaic
theory formally established, we close by revisiting the
“practical” questions posed in the introduction to this ar-
ticle concerning how ongoing coevolution contributes to
biodiversity. First, we have shown that hot spots need not
be ubiquitous to have a global influence on coevolution,
although rare hot spots will not have a disproportionate
impact unless selection in hot spots is relatively intense.
Second, we found that asymmetries in gene flow can in-
fluence local adaptation by, for example, stabilizing evo-
lutionary equilibria at which a species experiences minimal
fitness in hot spots and maximal fitness in cold spots.
However, asymmetries in gene flow seem no more or less
important than asymmetries in population regulation for
determining the evolutionary potential for polymor-
phisms. Finally, we found that allele frequency differences
between hot and cold spots within species will evolve un-
der some (but by no means all) circumstances. That is,
selection mosaics are indeed capable of producing spatially
variable coevolutionary outcomes across the landscapes
over which species interact.
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