Dipole Moment

CHRISS WESSEN
WASHINGTON STATE UNIVERSITY

[Chemical structures and diagrams related to dipole moments]
An inductor-capacitor (LC) circuit was used to measure the dipole moment of two polar molecules, Meta and Ortho-dichlorobenzene.

Uses:
- Polar versus non-polar solutions
- Solvent-solute interactions
- Net polarity and local polarity of molecules
• Differences in electron negativity cause electron density to be centered around one side of a molecule
• This causes the molecule to become polarized with a partial negative and partial positive charge
A capacitor can be used to measure this molecular polarization

- At time zero, metal plates have neutral charge
- At time zero+, metal plates are charged to the same voltage as the source
• Polar molecules present in the electric field of a capacitor orient themselves along that field
• The net charge at each plate is reduced by the presence of the partial charge of the polar molecule
• The source supplies more charge to compensate
• Net capacitance under polar solutions is larger than ambient conditions
By electrostatic theory

\[D = \varepsilon E = \varepsilon_0 E + P \]

Eq. 1

- D is the electric displacement
- E is the electric field strength
- \(\varepsilon \) is the electric permittivity
- \(\varepsilon_0 \) is the electric permittivity of air
- P is the polarization

Where \(\varepsilon \) is found with the dielectric constant \(\kappa \)

\[\kappa = \frac{\varepsilon}{\varepsilon_0} \]

Eq. 2

Substituting Eq. 2 into Eq. 1 yields

\[\kappa E = E + \frac{1}{\varepsilon_0} P \]

Eq. 3
F, the local electric field is a function of the electric field and the polarization

\[F = E + \frac{1}{3 \varepsilon_0} P \] \hspace{1cm} \text{Eq. 4}

Combining with Eq. 3 yields

\[F = \left(\frac{\kappa + 2}{\kappa + 1} \right) \frac{1}{3 \varepsilon_0} P \] \hspace{1cm} \text{Eq. 5}

This can be re-written to give the molar polarization \(P_M \) which has units of volume per mol

\[P_M = \left(\frac{\kappa - 1}{\kappa + 2} \right) \frac{M}{\rho} \] \hspace{1cm} \text{Eq. 6}

- \(M \) is the molar mass of solution
- \(\rho \) is the density of solution
Experimental

- Solutions of 1, 2, 3 and 4% Dichlorobenzene were made for both Meta and Ortho configurations, eight solutions total
- Capacitor cell was rinsed with 99.9% pure Benzene solution and were dried with compressed air
- Water jacket was installed with running water at 22.0 degrees C
- Empty cell was assembled, Hi and Lo frequency measurements were made
- 1% O-dichlorobenzene solution was poured into the cell until it was approximately ¾ths full
Experimental cont.

- Cell was reassembled and given 30 seconds for the solution to come to equilibrium temperature
- Three Hi and Lo frequency measurements were recorded
- Cell was emptied and rinsed with benzene solution and dried using compressed air
- Empty cell capacitance was measured again
- Process was repeated for each of the eight solutions
Experimental Setup
Raw Data

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mass dichlorobenzene</th>
<th>Mass Total</th>
<th>Clean</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-dichlorobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>0.810</td>
<td></td>
<td>0.43091</td>
<td>0.43058</td>
</tr>
<tr>
<td>2%</td>
<td>1.638</td>
<td></td>
<td>0.41692</td>
<td>0.41644</td>
</tr>
<tr>
<td>3%</td>
<td>2.395 44.599</td>
<td></td>
<td>0.42228</td>
<td>0.4221</td>
</tr>
<tr>
<td>4%</td>
<td>3.197 44.747</td>
<td></td>
<td>0.4087</td>
<td>0.40841</td>
</tr>
<tr>
<td>O-dichlorobenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1%</td>
<td>0.800 43.914</td>
<td></td>
<td>0.41859</td>
<td>0.10504</td>
</tr>
<tr>
<td>2%</td>
<td>1.603 44.143</td>
<td></td>
<td>0.41659</td>
<td>0.40315</td>
</tr>
<tr>
<td>1%</td>
<td>0.795 44.033</td>
<td></td>
<td>0.41613</td>
<td>0.40247</td>
</tr>
<tr>
<td>2%</td>
<td>1.604 44.132</td>
<td></td>
<td>0.41613</td>
<td>0.40247</td>
</tr>
<tr>
<td>3%</td>
<td>2.407 44.590</td>
<td></td>
<td>0.41578</td>
<td>0.40233</td>
</tr>
<tr>
<td>4%</td>
<td>3.202 44.915</td>
<td></td>
<td>0.41578</td>
<td>0.40233</td>
</tr>
</tbody>
</table>
Calculations

Frequency was used to measure the dielectric constant

\[f = \frac{1}{2\pi \sqrt{LC}} \quad \rightarrow \quad C = \frac{1}{4\pi L f^2} \]

\[C_{Hi} - C_{Lo} = \frac{1}{4\pi L} \left(\frac{1}{f_{Hi}^2} - \frac{1}{f_{Lo}^2} \right) \quad \rightarrow \quad \kappa = \frac{C_{Hi} - C_{Lo}}{(C_{Hi} - C_{Lo})_{air}} \]

Which simplifies to

\[\kappa = \left(\frac{1}{f_{Hi}^2 - f_{Lo}^2} \right)_{\text{sample}} \left/ \left(\frac{1}{f_{Hi}^2 - f_{Lo}^2} \right)_{air} \right. \]
To find the molar polarization of the solution, Eq. 6 is modified to yield

$$P_M = X_1 P_{1M} + X_2 P_{2M} = \left(\frac{\kappa - 1}{\kappa + 2} \right) \frac{M_1 X_1 + M_2 X_2}{\rho}$$ \hspace{1cm} \text{Eq. 7}$$

- X_1 is the mole fraction of benzene
- P_{1M} is the molar polarization of benzene
- M_1 is the molar mass of benzene
- X_2 is the mole fraction of dichlorobenzene
- P_{2M} is the molar polarization of dichlorobenzene
- M_2 is the molar mass of dichlorobenzene
- ρ is the density of solution
To find the molar polarization of the solute in solution, Eq. 7 is modified to

$$P_{2M}^0 = \frac{3M_1a}{(\kappa_1 + 2)^2 \rho_1} + \frac{\kappa_1 - 1}{(\kappa_1 + 2)^2 \rho_1} \left(\frac{M_2 - M_1b}{\rho_1} \right)$$ \hspace{1cm} \text{Eq. 8}$$

Where κ_1 is the dielectric constant of pure benzene, ‘a’ is the slope of the linearlized dielectric constant, and ‘b’ is the slope of the linearlized density.
Density and Dielectric Constant Versus Mole Fraction

$y = 3.628x + 2.159$
$R^2 = 0.944$

$y = 5.668x + 2.175$
$R^2 = 0.689$

$y = 0.601x + 0.872$
$R^2 = 0.962$

$y = 0.630x + 0.872$
$R^2 = 0.948$

Meta and ortho respectively. Red denotes ‘a’ values for Eq.8

$y = 3.628x + 2.159$
$R^2 = 0.944$

$y = 5.668x + 2.175$
$R^2 = 0.689$

Meta and ortho respectively. Red denotes ‘b’ values for Eq.8

$y = 0.601x + 0.872$
$R^2 = 0.962$

$y = 0.630x + 0.872$
$R^2 = 0.948$
This molar polarization in solution is the sum of the molar distortion polarization \((P_{2d}^0) \) and the molar orientation polarization \((P_{2\mu}^0) \)

\[
P_{2M}^0 = P_{2\mu}^0 - P_{2d}^0
\]

With

\[
P_{2d}^0 = \frac{n_2^2 - 1}{n_2^2 + 2 \rho_2} M_2
\]

Eq. 9

Eq. 10

- \(n_2 \) is the index of refraction for dichlorobenzene
- \(\rho_2 \) is the density of pure dichlorobenzene
Finally, the dipole moment (μ) of the molecule is found with the equation

$$\mu = 12.8(\frac{P_0^0}{T})^{1/2}$$

Eq. 11

Where T is the absolute temperature of the solution. This solution has units of Debye.
Vector Addition

Vector addition of electron negativity

$$\mu_{meta} = 2 \times 1.55 \cos(a)$$
$$a = 60^\circ$$

$$\mu_{ortho} = 2 \times 1.55 \cos(b)$$
$$b = 30^\circ$$
Results and Error Analysis

Summary of Results and Relative Error

<table>
<thead>
<tr>
<th>Dichlorobenzene</th>
<th>Vector Addition (D)</th>
<th>Experimental (D)</th>
<th>Literature (D)*</th>
<th>Percent Error Lit. vs. Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meta</td>
<td>1.55</td>
<td>1.54</td>
<td>1.48</td>
<td>3.91</td>
</tr>
<tr>
<td>Ortho</td>
<td>2.68</td>
<td>1.96</td>
<td>2.16</td>
<td>9.04</td>
</tr>
</tbody>
</table>

*literature values were found for liquid dichlorobenzene from Kuzbassk Polytechnical Institute, 1969
Conclusion

- Error Considerations
 - Frequency readings
 - Solvent effects
 - Wet vs. dry air frequencies

- Improvements
 - Overall well designed experiment

- Questions?
Sources
