General Expression for the internal energy U and the enthalpy H

\[dU = C_v \, dT + \left[T \cdot \left(\frac{\partial P}{\partial T} \right) - P \right] \, dV \]

\[dH = C_p \, dT + \left[V - T \cdot \left(\frac{\partial V}{\partial T} \right) \right] \, dP \]

Special cases:
1) ideal gases
2) constant volume and pressure processes

1. Ideal gases: the second term on both expressions is zero

\[dU = C_v \, dT \]

\[dH = C_p \, dT \]

2. Constant volume the second term in dU equals zero and at constant pressure the second term in dH equals zero

\[dU = C_v \, dT \]

\[dH = C_p \, dT \]

To calculate the enthalpy from the heat capacity at constant pressure C_p you need to integrate the expression of C_p in the range of temperatures.

\[\Delta H = \int_{T_1}^{T_2} C_p(T) \, dT \]

Finally for real gases the internal energy U has two terms; the first term is U_0 (standard internal energy) and the second term is called the imperfection internal energy U_i. This latter term is given by

\[U_i = \int_{\infty}^{V} \left[T \cdot \left(\frac{\partial P}{\partial T} \right) - P \right] \, dV \]

If you use the Redlich-Kwong expression for P in the following form and use Symbolics and the differentiate you will get
\[P(V, T) = \frac{R \cdot T}{V - b} - \frac{a}{\sqrt{T} \cdot V(V - b)} \]

\[\frac{d}{dT} P(V, T) = \frac{R}{V - b} + \frac{1}{2} \cdot \frac{a}{\frac{3}{2} T^2 \cdot V(V - b)} \]

then \(U_i \) is given by

\[
U_i = \left[\frac{R}{V - b} + \frac{1}{2} \cdot \frac{a}{\frac{3}{2} T^2 \cdot V(V - b)} \right] - P \int_{\infty}^{V} dV
\]

and the final equation for \(U_i \) is

\[
U_i(V, T) = \frac{3}{2} \cdot \frac{a}{\sqrt{T} \cdot b} \cdot \ln \left(\frac{V}{V + b} \right)
\]