50 Multiple Choice Questions- (Choose the best answer)

1. A cross between two true breeding lines one with dark blue flowers and one with bright white flowers produces F1 offspring that are light blue. When the F1 progeny are selfed a 1:2:1 ratio of dark blue to light blue to white flowers is observed. What genetic phenomenon is consistent with these results?
 a. epistasis
 b. *incomplete dominance*
 c. codominance
 d. inbreeding depression
 e. random mating

2. Mutations which occur in body cells which do not go on to form gametes can be classified as:
 a. auxotrophic mutations
 b. *somatic mutations*
 c. morphological mutations
 d. oncogenes
 e. temperature sensitive mutations

3. What would be the frequency of AABBCc individuals from a mating of two AaBbCc individuals?
 a. $\frac{1}{64}$
 b. $\frac{1}{32}$
 c. $\frac{1}{16}$
 d. $\frac{1}{8}$
 e. $\frac{3}{16}$
 f. $\frac{1}{4}$

4. The stage of meiosis in which chromosomes pair and cross over is:
 a. *prophase I*
 b. metaphase I
 c. *prophase II*
 d. metaphase II
 e. anaphase II
5. Polyploidy refers to:
 a. extra copies of a gene adjacent to each other on a chromosome
 b. an individual with complete extra sets of chromosomes
 c. a chromosome which has replicated but not divided
 d. multiple ribosomes present on a single mRNA
 e. an inversion which does not include the centromere

6. A gene showing codominance-
 a. has both alleles independently expressed in the heterozygote
 b. has one allele dominant to the other
 c. has alleles tightly linked on the same chromosome
 d. has alleles expressed at the same time in development
 e. has alleles that are recessive to each other

7. The phenomenon of “independent assortment” refers to:
 a. expression at the same stage of development
 b. unlinked transmission of genes in crosses resulting from being located on
different chromosomes, or far apart on the same chromosome.
 c. association of an RNA and a protein implying related function
 d. independent location of genes from each other in an interphase cell
 e. association of a protein and a DNA sequence implying related function

8. Mendel’s law of segregation, as applied to the behavior of chromosomes in meiosis, means
 that:
 a. pairing of homologs will convert one allele into the other, leading to separation of the
types.
 b. alleles of a gene separate from each other when homologs separate in meiosis I,
or in meiosis II if there is a single crossover between the gene and the
centromere.
 c. genes on the same chromosome will show 50% recombination
 d. alleles of a gene will be linked and passed on together through meiosis

9. Which component of transcribed RNA in eukaryotes is present in the initial transcript but is
 removed before translation occurs:
 a. Intron
 b. 3’ Poly A tail
 c. Ribosome binding site
 d. 5’ cap
 e. codons coding for the protein to be produced
10. Choose the correct statement about the genetic code.
 a. includes 61 codons for amino acids and 3 stop codons
 b. almost universal; exactly the same in most genetic systems
 c. three bases per codon
 d. some amino acids are coded by multiple codons
 e. all of the above

11. X-chromosome inactivation
 a. normally takes place in males but not females
 b. is the cause of the Y chromosome being genetically inactive
 c. takes place in humans so that the same X chromosome is inactive in all of the cells
 of a female
 d. occurs in fruit flies but not in mammals
 e. results in genetically turning off one of the two X chromosomes in female mammals

12. DNA ligase is:
 a. an enzyme that joins fragments in normal DNA replication
 b. an enzyme involved in protein synthesis
 c. an enzyme of bacterial origin which cuts DNA at defined base sequences
 d. an enzyme that facilitates transcription of specific genes
 e. an enzyme which limits the level to which a particular nutrient reaches

13. An Hfr strain of E. coli contains:
 a. a vector of yeast or bacterial origin which is used to make many copies of a particular DNA sequence
 b. a bacterial chromosome with a human gene inserted
 c. a bacterial chromosome with the F factor inserted
 d. a human chromosome with a transposable element inserted
 e. a bacterial chromosome with a phage inserted
14. An experiment was conducted in *E. coli* to map the following genes (pro, his, bio, met, phe and trp) on a circular map using 3 different Hfr strains.

Strain 1 Order of transfer (early to late): \(\text{trp met his pro} \)
Strain 2 Order of transfer (early to late): \(\text{his met trp bio} \)
Strain 3 Order of transfer (early to late): \(\text{pro phe bio trp} \)

Based on the results what is the most likely map?

a. ![Map a](image)

b. ![Map b](image)

c. ![Map c](image)

d. ![Map d](image)

15. Generation of antibody diversity in vertebrate animals takes place through:

a. the presence of as many genes in the germ line as there are types of antibodies possible.

b. infection with bacteria carrying antibody genes

c. infection with viruses carrying antibody genes

d. polyploidy in antibody-forming cells

e. rearrangement of DNA in tissues that go on to produce antibodies

16. Replication of DNA:

a. takes place in a “conservative” manner

b. takes place in a “dispersive” manner

c. *takes place in a “semi-conservative” manner*

d. usually involves one origin of replication per chromosome in eukaryotes

e. takes place only in the 3’ to 5’ direction
17. A duplication is:
 a. an exchange between non-homologous chromosomes, resulting in chromosomes
 with new genes adjacent to each other.
 b. loss of genes in part of a chromosome
 c. an extra copy of the genes on part of a chromosome
 d. a reversal of order of genes on a chromosome
 e. an extra set of chromosomes in an organism

18. What is the co-transduction frequency for the A and B genes, from the following dataset?
 (Assume that there has been selection for the A+ form of the A gene).

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+B+ C+</td>
<td>10</td>
</tr>
<tr>
<td>A+B+ C-</td>
<td>30</td>
</tr>
<tr>
<td>A+ B- C+</td>
<td>20</td>
</tr>
<tr>
<td>A+ B- C-</td>
<td>40</td>
</tr>
</tbody>
</table>

 a. .10
 b. .20
 c. .30
 d. .40
 e. .50

19. A mutation in a codon leads to the substitution of one amino acid with another. What is the
 name for this type of mutation?
 a. nonsense mutation
 b. *missense mutation*
 c. frameshift mutation
 d. promoter mutation
 e. operator mutation

20. Mapping of human chromosomes:
 a. has been restricted to the sex chromosomes because of small family sizes
 b. *proceeded much more successfully as large numbers of DNA markers became available.*
 c. has determined that the number of linkage groups is about twice the number of chromosomes
 d. has demonstrated that almost all of the DNA is involved in coding for genes
 e. has shown that there are more genes on the Y than on the X chromosome
21. Homeobox sequences
 a. *are present in the genome of many animal species*
 b. are found in prokaryotes but not in eukaryotes
 c. were identified as the integration sites for bacterial viruses
 d. represent integration sites for transposable elements
 e. represent the termination signals for transcription

22. Tracing of a cell lineage during development means that:
 a. *the cells giving rise to and derived from a specific cell are known*
 b. the sequence of the enhancers for developmental genes is known
 c. the regulatory genes for the organism have been genetically mapped
 d. cell components in the membrane involved in signaling have been isolated
 e. cell components in the nucleus involved in signaling have been isolated

23. Zinc finger proteins and helix-turn-helix proteins are:
 a. *types of DNA-binding proteins*
 b. involved in the control of translation
 c. components of ribosomes
 d. part of the hemoglobin in blood cells
 e. bound to transfer RNA during replication

24. Transcriptional activator proteins:
 a. transcribe a messenger off a DNA template
 b. bind to ribosomes to activate the production of specific proteins
 c. are produced during an infection of bacteria by a phage
 d. are essential to function of transfer RNAs during translation
 e. *bind regions near a eukaryotic gene and allow an RNA polymerase to transcribe a gene*

25. Differential distribution of substances in the egg most typically results in:
 a. *differences in gene expression which may establish a pattern in the embryo as the cells divide*
 b. amplification of specific genes during development
 c. development of polyploid tissues
 d. loss of specific genes during development
 e. dominance of genes derived from the father
26. Arabidopsis is advantageous for plant genetic research because:
 a. it is commercially important as a food crop
 b. it is an endangered species
 c. it is the closest to humans of any existing plant
 d. it is a small plant with a small genome size which can be raised inexpensively
 e. it is a close relative of corn and results with this species can be applied to problems in corn

27. A homeotic mutation is one which:
 a. is present in only one form in an individual
 b. substitutes one body part for another in development
 c. results in development of a tumor
 d. is wild type at one temperature and abnormal at another
 e. leads to increased body size in an organism

28. Assuming that the level of glucose is low, a mutation in the repressor of the lac operon in E. coli, preventing binding of the repressor to the operator, should result in:
 a. constitutive expression of the lac operon genes
 b. lack of expression or reduced expression of the lac operon genes under all circumstances
 c. expression of the genes only when lactose is present
 d. expression of the genes only when lactose is absent

29. Assuming that the level of glucose is low, a mutation in the repressor associated with the lac operon of E. coli which prevents binding of the repressor to lactose should result in:
 a. constitutive expression of the lac operon genes
 b. lack of expression or reduced expression of the lac operon genes under all circumstances
 c. expression of the genes only when lactose is present
 d. expression of the genes only when lactose is absent

30. RFLP analysis is a technique that
 a. uses hybridization to detect specific DNA restriction fragments in genomic DNA
 b. is used to determine whether a gene is transcribed in specific cells
 c. measures the transfer frequency of genes during conjugation
 d. is used to detect genetic variation at the protein level.
 e. is used to amplify genes for producing useful products
31. Plasmid vectors for cloning
 a. can generally accommodate larger inserts than phage vectors can
 b. *grow within bacteria, and are present in bacterial colonies on an agar plate*
 c. can accommodate inserts of over 100 kilobases
 d. include centromeres to allow propagation in yeast
 e. burst bacteria and form plaques on a “lawn” of bacteria

32. Simple tandem repeat polymorphisms in humans are most useful for:
 a. *solving criminal and paternity cases*
 b. reconstructing the relationships of humans and chimps.
 c. estimating relationships of humans and Neanderthals
 d. transferring disease resistance factors into bone marrow cells
 e. estimating matches for blood transfusions

33. The polymerase chain reaction or PCR is a technique that
 a. was used to demonstrate DNA as the genetic material
 b. is used to determine the content of minerals in a soil sample
 c. *uses short DNA primers and a thermostable DNA polymerase to replicate specific DNA sequences in vitro.*
 d. measures the ribosome transfer rate during translation
 e. detects the level of polymerases involved in replication

34. Positional cloning refers to:
 a. using a selection procedure to clone a cDNA
 b. cloning a portion of a gene using PCR
 c. isolating a gene by PCR using primers from another species
 d. isolating a gene from a specific tissue in which it is being expressed
 e. *mapping a gene to a chromosomal region and then identifying and cloning a genomic copy of the gene from the region*

35. Large quantities of useful products can be produced through genetic engineering involving:
 a. bacteria containing recombinant plasmids
 b. yeast carrying foreign genes
 c. transgenic plants
 d. mammals producing substances in their milk
 e. *all of the above*
36. On average, how many fragments would a restriction enzyme which recognizes a specific 4
base sequence in DNA be expected to cleave a double-stranded bacteriophage with a
genome size of 5,000 bp into?
 a. about 2
 b. about 4
 c. about 20
 d. about 50
 e. about 1250

37. The “sticky ends” generated by restriction enzymes allow:
 a. selection for plasmids lacking antibiotic resistance
 b. easy identification of plasmids which carry an insert
 c. replication of transfer RNA within the bacterial cell
 d. insertion of centromeres into ribosomes lacking them
 e. pieces of DNA from different sources to hybridize to each other and to be
 joined together

38. QTL analysis is used to:
 a. identify RNA polymerase binding sites
 b. map genes in bacterial viruses
 c. determine which genes are expressed at a developmental stage
 d. identify chromosome regions associated with a complex trait in a genetic
 cross
 e. determine the most rapidly-evolving parts of genes

39. Assuming Hardy-Weinberg equilibrium, the genotype frequency of heterozygotes, if the
frequency of the two alleles at the gene being studied are 0.6 and 0.4, will be:
 a. 0.80
 b. 0.64
 c. 0.48
 d. 0.32
 e. 0.16

40. The likelihood of an individual in a population carrying two specific alleles of a human DNA
marker, each of which has a frequency of 0.2, will be:
 a. 0.4
 b. 0.32
 c. 0.16
 d. 0.08
 e. 0.02
41. A threshold trait is one which:
 a. is expressed on a continuous scale (such as blood pressure)
 b. is present in a few discrete classes, but is influenced by both genetics and the environment (such as diabetes or schizophrenia)
 c. is caused by only a single gene, with no environmental influence
 d. is present in a very low frequency in the population
 e. is associated with superior survival of the heterozygote

42. Mitochondrial DNA is advantageous for evolutionary studies because:
 a. it is inherited only through the female parent and thus evolves in a way that allows trees of relationship to be easily constructed
 b. it is inserted into the X chromosome
 c. it first appeared in humans and is not found in other animals
 d. it evolves more slowly than the genes in the nucleus
 e. it was derived from the globin genes as an extra copy

43. What are the assumptions of Hardy Weinberg equilibrium?
 a. Small population size, random mating, no selection, no migration, no mutation
 b. large population size, random mating, no selection, no migration, no mutation
 c. large population size, random mating, heterozygotes survive the best, no migration, no mutation
 d. large population size, like individuals mate, no selection, no migration, no mutation
 e. large population size, random mating, no selection, migrants enter from other populations, no mutation

44. Twin studies in humans are useful because:
 a. they allow more refined estimates of chromosome location to be made
 b. twins have a greater likelihood of being heterozygous
 c. they allow improved expression of genes
 d. cloning of genes is facilitated by the presence of extra copies.
 e. they allow genetic as opposed to environmental influences on variation in a trait to be estimated

45. Which of the following statements about heritability are true?
 a. is a measure of level of gene linkage
 b. is a measure of inbreeding
 c. is a measure of proportion of repeated DNA in an organism
 d. is a measure of the level of heterozygotes in a population
 e. is a measure of the proportion of variation that is due to genetic causes
46. The allele associated with sickle cell anemia apparently reached a high frequency in some human populations due to:
 a. random mating
 b. superior fitness of heterozygotes in areas where malaria was present
 c. migration of individuals with the allele into other populations
 d. a high mutation rate at that specific gene
 e. genetic drift

47. An increase in the inbreeding coefficient, F, is likely to result in:
 a. reduced likelihood of heterozygotes being present in a population
 b. higher proportion of genes that show linkage
 c. higher proportion of genes with introns
 d. lower level of difference between proteins in two daughter cells
 e. higher level of difference between RNA molecules in two daughter cells

48. Most new mutations appear to be:
 a. beneficial
 b. neutral or deleterious
 c. present in homozygotes rather than heterozygotes
 d. detectable using allozyme studies (protein electrophoresis)
 e. present within pericentric inversions

49. If the frequency of males affected with an X-linked recessive condition in a human population is .10 (one in ten), what will be the expected frequency of affected females?
 a. .0001
 b. .001
 c. .02
 d. .01
 e. .05

50. The following genotypes are found in a population:

<table>
<thead>
<tr>
<th></th>
<th>AA</th>
<th>Aa</th>
<th>aa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70</td>
<td>50</td>
<td>20</td>
</tr>
</tbody>
</table>

What are the allele frequencies of A and a?
 a. A = 0.86 and a = 0.14
 b. A = 0.68 and a = 0.32
 c. A = 0.63 and a = 0.36
 d. A = 0.32 and a = 0.68
 e. A = 0.36 and a = 0.63