[ Graphics OFF ]
HOME ABOUT US TOUR STAFF LINKS CONTACT US SITE MAP
WHEAT ANALYSIS SYSTEM REGIONAL QUALITY DATA PUROINDOLINE PUBLICATIONS VARIETY QUALITY SCORES BREEDERS LOGIN PNW WQC INFO
Recent Publications
Abstract
Wheat grain hardness among chromosome 5D homozygous recombinant substitution lines using different methods of measurement. Cereal Chemistry 76:249-254
Morris,C.F., DeMacon,V.L. and Giroux,M.J.
USDA-ARS Western Wheat Quality Lab and Washington State University
The level of grain hardness of wheat (Triticum aestivum) cultivars profoundly affects milling properties and end-use. We examined grain gardness among a genetically defined set of 83 chromosome 5D homozygous recominant substitution lines derived from soft whea cv. Chinese Spring and hard wheat cv. Cheyenne and compared four common methods of measuring wehat grain hardness. Measures of grain hardness included a modified particle size index, Brabender Quadrumant flour milling, near-infrared reflectance (NIR) spectroscopy, and the single-kernel characterization system (SKCS). Duncan's multiple range test was used to group recombinant lines according to parental classes. Quadrumat milling fractions, percent bran and middlings, were well correlated to NIR and SKCS grain hardness, whereas break flour, a traditional measure of grain hardness, was poorly correlated to other hardness measures. NIR and SKCS grain hardness measures provided the greatest and similar mean separations. Both methods identified recombinant lines as being significantly outside either parental class and significantly different from and in between the two parental classes. Between two divergent environments, correlations (r) for Quadrumat bran and middlings percents and NIR and SKCS hardness ranged from 0.83 to 0.94. Analysis of variance indicated that lines differed substantially for hardness, and hardness was highly influenced by environment, albeit consistently, as indicated by low line-location model interaction terms. The results confirmed the presence of major allelic differences assignable to chromosome 5D and suggested the action of minor gene(s). Break flour, in particular, showed strong indications of transgressive segregation independent of the Hardness (Ha) locus. The Perten 4100 SKCS provided the best (most discriminating) measure of the material properties of the wheat endosperm manifested by the action of the Ha locus.
Printable Version
USDA Nondiscrimination Statement | Statements and Disclaimers | WSU Copyright | WSU Disclaimer and Freedom of Information Statement
1997 - 2010 USDA/ARS Western Wheat Quality Laboratory - Webmaster