[ Graphics OFF ]
HOME ABOUT US TOUR STAFF LINKS CONTACT US SITE MAP
WHEAT ANALYSIS SYSTEM REGIONAL QUALITY DATA PUROINDOLINE PUBLICATIONS VARIETY QUALITY SCORES BREEDERS LOGIN PNW WQC INFO
Recent Publications
Abstract
Delineating the Role of Polyphenol Oxidase in the Darkening of Alkaline Wheat Noodles Journal of Agricultural and Food Chemistry 54:2378-2385
Fuerst,E.P.,Anderson,J.V.,Morris,C.F.
This study evaluated the effects of inhibitors on polyphenol oxidase (PPO) activity, the effect of the PPO inhibitor tropolone on noodle darkening, and the correlation of PPO activity with darkening of alkaline noodles. The PPO inhibitors tropolone and salicylhydroxamic acid (each at 1 M) reduced kernel PPO activity by approximately 50% in three hexaploid wheat cultivars but did not inhibit PPO activity in the two very low PPO cultivars, durum Langdon, and the synthetic hexaploid-derived ID580. Tropolone (100 g/g flour) inhibited alkaline noodle darkening (L*) by 13-25% in the low PPO wheat cultivar, ID377s, and by 39-54% in the high PPO wheat cultivar, Klasic. Alkaline noodle darkening among 502 wheat samples was correlated with kernel PPO activity (r ) 0.64). Results substantiate the hypothesis that PPO plays a major role in darkening of alkaline noodles. However, results also indicate that substantial darkening would occur even at zero PPO activity, as measured in the kernel PPO assay. Therefore, darkening of alkaline noodles is probably due to the cultivarspecific level of PPO activity and the presence of at least one additional darkening mechanism. Further investigation is required to identify the phenolic discoloration agent(s) and to determine the potential roles of non-PPO discoloration mechanisms, both enzymatic and nonenzymatic, in wheat products.
Printable Version
USDA Nondiscrimination Statement | Statements and Disclaimers | WSU Copyright | WSU Disclaimer and Freedom of Information Statement
1997 - 2010 USDA/ARS Western Wheat Quality Laboratory - Webmaster