Technical editing can be a fascinating profession. It might become your main job, it might be one of your job responsibilities as a technical communicator, or you might choose to become a freelance technical editor, picking up contracts regularly or occasionally. Good editors are hard to find, and it's not unusual for writer-editor relationships to last for years, because of the editor's superior work and familiarity with the writer's work and style.

One of the greatest benefits of being a technical editor is the information you come into contact with—it can be amazingly interesting. By the nature of the job, you come into contact with information before it is released to the public. Depending on your specialty, you might even deal with information so new that your client asks you to sign a non-disclosure agreement because it isn't patented yet.

In this chapter, you will see specific editing responsibilities in the context of the whole process of conceiving, writing, reviewing, and publishing documents—the big picture of editing—beginning with the basic questions: What does an editor do and why? How does a technical editor differ from any other kind of editor? The two scenarios in this chapter offer some answers. Charlene Strickland is a full-time, in-house editor for a firm that creates computer and software documentation. Larissa Donahue is a freelance editor—a more and more common career choice—who has developed relationships with a number of clients. Both editors are experienced, and they reflect the diversity of opportunities and challenges for good technical editors.

Key Concepts

Editors today are information designers. They often advise writers about the best choices for content, organization, and visual design. They are aware of audience and purpose—just as writers must be. They help prepare documents for publication, both in print and online. Basic copyediting, making the document correct and consistent, is just one of many editorial tasks.

Scenario One: A Full-Time, In-House Editor

Charlene Strickland works full-time in Information Technology for Science Applications International Corporation (SAIC) in Albuquerque. This firm works on contract for companies that need computer programs and documentation but do not have the staff or the time to complete the work themselves. The companies can achieve high quality at a fair price by hiring specialists to do the work.
Charlene was the editor on a project to develop a computer security tutorial on an intranet for a national laboratory. As with most typical workplace documents, the tutorial was created because a problem had to be solved. The laboratory is required by U.S. law to offer computer security training every year to each of its 7,000 employees. Each employee has to be recertified each year by passing a test that assesses his or her knowledge of the material. Classroom training is expensive and time-consuming, and training 7,000 employees with different levels of experience in computer use and knowledge of security procedures was a logistical nightmare. The training was further complicated by the fact that three different types of computer workstations were used in various parts of the laboratory.

The laboratory contracted with Charlene’s company to produce the training in an online version. Online training could solve the scheduling, computer platform, and expertise problems while reducing the cost of training. Users with different types of computers could use the same website. The design could incorporate testing as well as instruction. Employees could complete the tutorial at their own pace. They would study the tutorial on their own computers, answer questions and get feedback, and then take a test to earn certification in computer security.

The Product Team

The team that produced the tutorial included thirteen people with different types of expertise and responsibilities. Several of them were working on multiple projects simultaneously and did not devote all their time to this project.

- The project manager met with the client and was responsible for ensuring that the project met the client’s specifications and was delivered on schedule.
- Three writers provided expertise in computer security and created the content for the tutorial.
- Four instructional designers organized information for maximum comprehension and retention.
- Three programmers made the pages work technically. They coded the text and graphics for each page and created the links between subjects and modules.
- A graphic artist created the color schemes, illustrations, and screen design for the instructional modules.
- The editor reviewed content development and maintained coherence in the parts produced by multiple writers and instructional designers while assuring basic grammatical and stylistic correctness.

All of these team members had specialized roles, but the editor needed to be a generalist as well as a specialist. Charlene was the one person on the team with whom all the other team members interacted. Thus, she was responsible not just for the effectiveness of language in the program but also for coordinating the efforts of the other team members and for ensuring that the information produced collaboratively through division of labor was complete, consistent, and appropriate for the purpose.

Project Definition and Planning: Content, Structure

The division of labor, in which different specialists were working simultaneously on different parts of the final product, required initial planning. The team used a software development process of planning, analysis, design, development, and implementation. Analysis
required the team to learn the customer’s expectations and to become familiar with the content of the training. Because the laboratory had previously delivered the computer security training in a classroom setting, some teaching materials were available to SAIC for developing the content. These materials, called legacy documents, were an important source of information for the training, but the materials contained inconsistencies and needed to be updated. The client provided this updated information in response to queries from the writers and editor.

The team planned six instructional modules plus a comprehensive test. A clear and specific plan outlining the content to be covered in each training module had to be created and approved before the writers and programmers could begin working on the modules assigned to them. They displayed the plans on a storyboard, a poster-sized visual and verbal outline of the structure and contents of the tutorial. The storyboard included scripts for the components of the tutorial. Scripts contained both visual and textual elements, chunked by the sequence of screens that comprised each module. A template for the scripts, written as a Microsoft Word file, contained the scripts’ elements in a three-column table format. Columns included the title of the electronic file, the action of the user, and the text that would appear as a result of the action.

The editor completed these tasks:

- contributed to information gathering and planning
- developed the template for the scripts
- drafted a style sheet of terms
- compared the scripts to the legacy documents for accuracy

Planning for Design and Production

Design and production decisions affect writing and editing decisions from the start. The team had to find out what kind of equipment and software the laboratory would use for the tutorial. Software and hardware affect what the screen will display and how fast the text and images will load. The team planned screen design to encourage reading, comprehension, and navigation. The team had to decide whether screens would require users to scroll or whether each one would be complete and how to create transitions from one screen to the next. They decided as well to use a minimalist style, with as few words as possible, to avoid filling the screens with endless blocks of text. They planned as much interaction as possible within the tutorial so that the laboratory employees would not merely read. These plans were a result of an analysis of the laboratory’s needs, available options for meeting those needs, and principles of instructional design and good writing.

Planning for visual design was part of the planning for content and organization because design needed to support the learning goals, not substitute for them. The SAIC team wanted to avoid a trendy, eye-catching tutorial. Instead they aimed for one that would accomplish the goal of teaching computer security. Each design decision had to support the instructional goals.

All of these plans at the beginning of the project gave the editor some measures for reviewing the drafts of the modules. Charlene’s participation in planning meant that she would not come in at the end of the project with a different idea and try to make substantial changes. She and other team members pursued the same goals from the start.
Editorial Review

Charlene used the legacy materials plus the team’s plans for content and design as guidelines for editing. She edited each module separately. Her top priority in editing was to make the content accurate, complete, and readable.

Charlene reviewed the grammar. She made changes in subject-verb agreement and the use of conjunctions (such as confusing since with because and between with among). Because online documents are often more informal in voice than material on the printed page, she also used contractions and did not spell out any numbers.

Because the modules were written by different people, Charlene edited to make the modules read coherently, in one voice, as if they had been written by a single author. Editing the tutorial as a whole was a necessary step to prevent inconsistency, contradiction, and redundancy. She eliminated arbitrary variations such as changing from second to third person.

Charlene also created a style sheet to ensure that terms were consistent across the modules with regard to spelling, abbreviations, and capitalization and that features were displayed consistently. Throughout the document, she made sure that the laboratory was referred to by its abbreviation, for example, not the first word in its name. To create consistency in bulleted lists, Charlene capitalized the first letter of each item and ended each item with no punctuation. She edited items in each list for parallel structure and used a colon to end the phrase preceding each list entry.

The writers submitted their drafts as computer files, and Charlene edited them on the computer, without printing. Editing on the computer helped her see the screens as the laboratory employees would and thus get a reader’s perspective. Because she knew the subject matter and was in close contact with the writers, she could edit sentences or reorder paragraphs with confidence that she was not distorting the meaning. Still, it is easy to introduce new errors while editing, and the work required continual proofreading. Sharing files required careful version control, so that writers and the editor would always work on the most recent version. Each writer or editor who modified a file included the date of revision in the file name.

Charlene used the tutorial as a laboratory employee would, choosing the different lessons through the menus, responding to questions, and navigating through the screens. She was conducting an informal usability test in conjunction with editing, completing tasks according to directions, not just reviewing the words on the page. Unclear directions or unexpected outcomes prompted additional editing of the text.

Client Review

The clients reviewed printed pages of each module and then viewed each module screen by screen as a programmer, along with Charlene, presented and discussed them. The clients made suggestions, and the programmer changed the screen so the clients could see and approve changes. Charlene proofread these on-the-fly changes.

When the final document was approved, Charlene went through it one more time, making sure that every error had been corrected, that appropriate transitions were all in place, and that the tutorial was clear and easy to use.
Scenario Two: A Freelance Editor

More and more often, technical editors work for themselves (sometimes owning their own companies) or as contractors for companies that market their services. Their workload can vary dramatically. Sometimes, in a difficult economy, a freelancer’s workload can dry up—but it can also increase as companies cannot maintain in-house staff or entire technical communication departments and instead look to independent freelancers. A good freelance editor often establishes working relationships that may continue for years.

Larissa Donohue has a “day job” as an associate professor in technical communication and rhetoric at a major university. She has been editing as a freelancer for sixteen years and has recently established her own editing company, Larissa Donohue & Associates, LLC. Her education has been technical communication through and through—she has a bachelor’s degree, a master’s, and a doctorate, all with specializations in technical communication. This level of education is useful, of course, but not necessary; most freelance editors have undergraduate degrees in English or technical communication, but some have specialized degrees in the fields in which they edit—engineering, health management, computer science, and the like.

Larissa began editing academic manuscripts as an undergraduate student for a faculty member, continued editing proposals and research articles for faculty members to earn extra money in graduate school, and now edits for clients across the university community. Larissa’s editing covers a wide variety of subjects, because her university job brings her business from professors and departments representing a wide range of disciplines. She has worked with some clients for years (including two professors from her graduate student days), and she edits grant proposals for her colleagues in the English Department for free.

Larissa has several long-term contracts, including one with a government agency, editing management plans for cultural and natural resources in their facilities. She also often works on smaller projects, some for community and nonprofit organizations: a letter of inquiry to the United Way from a local nonprofit, asking for United Way support; a business plan for an artisanal bakery; an application from the poets in her department requesting funds for poetry scholarships from a local foundation. As a freelance editor, Larissa rarely turns down a paying job, no matter what the subject, and finds that offering her services gratis to local community and nonprofit organizations is a good way to network and identify new paying clients.

Larissa finds clients primarily through word of mouth. When she joined her faculty at her university, she contacted the Office of Research Services and explained her expertise. In turn, this office passes on her contact information to interested researchers. When potential clients contact her, Larissa typically explains the editing process with them via email, asks what level of editing they are interested in, and requests information about the situation surrounding their document. Once the parameters of the project are established, she discusses costs. (If her own fee is too high for a prospective client, Larissa often suggests one of her former students from the university courses she teaches in technical editing.)

In her sixteen years as an editor, some 95 percent of the documents that Larissa has edited have been in electronic format—even during the early years of her career—and almost 100 percent of her interactions with clients are through email.

The Team, the Project, and the Process

Unlike an in-house editor, Larissa rarely works with a full team—but her work is no less collaborative. She must tailor what she does to each client, which means spending considerable time talking or emailing with clients about the audience and intended purpose for the
document. Often the most important work—defining audience and purpose—is done before Larissa begins any document work at all. Every project must pass through client review, and Larissa is well aware that many of her clients see her as the expert in language and format on their documents.

Once the initial parameters of the project are established, Larissa often works more or less on her own to complete the defined tasks. She may email her client from time to time to ask questions or seek clarification, and occasionally, on larger projects, projects with tight deadlines, or ones of particular importance, she will hire a former student whom she trained to copyedit and proofread. Her government contract includes fees for an assistant editor, since the ongoing workload would otherwise preclude Larissa from taking on other jobs.

Larissa’s favorite aspect of technical editing is the fascinating information she comes across her desk—nuclear dosimetry models or proposals for a fellowship to a research library at All Souls College at Oxford. What other job would involve such a wide and exciting range of information? But Larissa’s second favorite aspect of editing is the editing itself. She loves to take a lackluster, confusing document and make it irresistibly persuasive and crystal clear.

Comment: Editing In-House and Freelance

The editorial procedures are comparable for both Charlene and Larissa, despite their different work environments.

- **Both editors edit comprehensively.** Charlene and Larissa edit not just for grammar, punctuation, and consistency, but also for content, organization, and design. Both see the document as a whole, as users will use it, not just at the sentence level.

- **Both editors are part of a product team from the start.** When editors begin work on a project at the development stage, they can suggest good ways to present information and prevent problems. If an editor joins a project later, when the document is just about ready for release, often only superficial problems can be repaired. Larissa has less freedom to determine when she will become a member of the product team, but both editors understand the value of being in at the beginning.

- **Both editors see themselves as collaborators.** They work hard to establish good relationships with, in Charlene’s case, fellow team members or, in Larissa’s, her clients. They share the same goal: to develop a document that will work for the end users.

The differences that exist between Charlene’s job and Larissa’s are ones of setting but not of substance. The editors need to see the documents as readers will see them in order to edit well. Both editors are concerned with content (completeness, accuracy of details), organization (relation of the parts to each other and to the whole), style, page or screen design, and usability.

The Editing Process

As you can see from the scenarios above, editing processes are not standard across the field; they often depend on where and for whom you are working. In addition, editing processes are continually evolving as technology changes the way we work with documents. For technical editors, there are two primary functions: text editing and preparing the document for
publication. Editors may participate in one stage, every stage, or anything in between. As you gain experience editing, you will create your own process according to your abilities and the requirements of your workplace. Being able to articulate a process and what actions occur at each stage is crucial for being able to reach agreement with a writer about what editing needs to be performed.

Text Editing

Editing the text means making it complete, accurate, correct, comprehensible, usable, and appropriate for the readers. An editor, whose specialty is language and document design, can suggest ways to make the document easier for readers to understand and use. The editor knows how to use style, organization, and visual design to achieve specific goals.

Even when a writer is sophisticated in the use of language, an editor can bring objectivity to the reading that the writer may lose by knowing the subject too well. The editor works with the text from the perspective of the reader. The editor serves as the reader's advocate. As an advocate, the editor is concerned not just with comprehension and access but also with fairness and safety. The editor has an ethical responsibility to readers.

Text editing responsibilities may be classified as comprehensive editing, when the editor works with the content, organization, and design of the text as well as with grammar and punctuation; basic copyediting, when the editor works with consistency, grammar, punctuation, spelling, mechanics, and labeling of illustrations; and proofreading, when the editor ensures that previous editorial changes have been incorporated and looks for last-minute typographical and grammatical mistakes.

The amount of editing that is needed—or that gets done—depends on the importance of the document, on its audience, and on time and budget constraints. A company newsletter that won’t be distributed publicly may be distributed without much editing. The editor may simply check that every page is present and correctly numbered. For another document, the editor may check spelling, grammar, and consistency but not completeness and accuracy of information, organization, or visual design. The editor’s supervisor or client establishes the expectations and limits of the job together with the editor.

Comprehensive Editing

When the editor shares responsibility with the writer for document content and usability, the editor is editing comprehensively. Other terms for this type of editing are developmental editing, macro editing, analysis-based editing, and substantive (sub•stan•tive) editing. The term developmental emphasizes the process in which the editor works from the start with the writer in developing the content and organization. Macro distinguishes comprehensive text features from “micro” features such as punctuation. Analysis foregrounds the process. The term substantive emphasizes document content or substance. Comprehensive is used in this textbook because it suggests both the process and the focus of editing.

In comprehensive editing, the editor analyzes the document’s purposes and makes decisions about the best ways to meet these purposes. The editor may add or delete material and evaluate the reasoning and evidence. The editor also reviews organization, visual design, style, and use of illustrations in order to help readers find and comprehend the information they need.

Some tasks of comprehensive editing may take place before the first draft is written, so the writer and editor can develop a shared concept of the document and its readers and purpose. The editor or writer may create outlines, templates, and a glossary of key terms.
The editor may review early drafts to enable necessary reshaping of the document before a writer has invested too much time in its development. The editor may also edit for content after the document is almost complete. The editor may advise the writer about revisions or even rewrite some sections. Because comprehensive editing addresses the content, the editor must know something about the subject matter.

Basic Copyediting

Copyeditors check for correct spelling, punctuation, and grammar; for consistency in mechanics, such as capitalization, from one part of the document to the next; and for document accuracy and completeness. The copyeditor may mark the document to indicate typeface and type size, column width, and page length or may make changes to the electronic document itself. Basic copyediting assumes that content, organization, visual design, and style are already established.

A good copyeditor has an eye for detail as well as a command of language. The editor refers to handbooks, style guides, and other printed or online sources and queries the writer or a technical expert to resolve inconsistencies or other text questions.

Proofreading

The term *proofreading* is sometimes used loosely as a synonym for *copyediting*. Both processes share markup symbols and the goal of correctness. Electronic manuscripts and editing blur the distinctions between copyediting and proofreading because many of the editorial directions can be incorporated at the time of editing, not in a separate procedure. However, a final check of the document, separate from copyediting, provides good quality control. The two processes differ in the purposes they serve, in the stage of production during which they occur, and in the placement of marks on the page.

Proofreaders compare a current version of a document with the earlier version to establish that marked corrections have been made and instructions followed. Proofreading may occur at any point in production when the document is prepared in a new form, as from the author’s original to page proofs. A proofreader confirms that errors previously noted have been corrected and checks that new procedures (such as page breaks or the placement of illustrations) have been completed correctly.

Preparing Documents for Publication

An editor is the link between the writing and the publishing of a document. Writers may lack the means for publishing and distributing their materials. They may also have little interest in preparing the document for publication. Their purpose is to develop the content.

Companies may complete a number of publishing functions in house, or they may contract for services. They may employ desktop publishing or web design specialists with the expertise to convert drafts of the document to the way they will look on the page or screen. Production specialists may prepare templates and style sheets to define the type and page size of the document. For example, all level-one headings will use the same font size and spacing. Alternatively, the company may contract for professional typesetting and printing or web design.

Whether the work is done in-house or by contract, the editor communicates with the production specialists. (The writer is probably not involved.) The editor reviews the final draft of the document to verify that the templates have been applied correctly or to mark the document with instructions for type and layout and placement of illustrations.
The production editor contracts with vendors. The editor obtains bids for production based on length, illustrations, color, and turnaround time. For print documents, these estimates also include number of copies, paper, and binding. If the cost estimate exceeds the budget, the editor will either modify some decisions about the publication, such as choosing cheaper paper for a printed document, or negotiate for a larger budget.

Document Development and Production:
A Summary of the Process

Technical editing is part of the process of developing documents that solve problems or enable readers to use products. Editing requires knowledge of language and procedures of marking documents, but good editorial decisions also require knowledge of how those decisions affect the rest of the process and the effectiveness of the document as readers will use it. Editing is one type of quality control. The ultimate goal is an effective document as measured not just by language standards but also by ethical and usability standards.

In spite of good editorial judgment, the editor may miss some areas for improvement in the document. Technical reviews and usability tests provide additional information. A technical review is a review for content by a subject matter expert, such as a computer programmer or medical researcher. The reviewer looks for accuracy and completeness of information. In a usability test, representative users are observed performing the tasks that the document teaches under the intended conditions of use. The users may try to use software by following instructions in a manual. If they can’t figure out how to do something, the testers know that the manual (or the software) requires revision. Informal usability tests for early versions of this textbook took place in classrooms, with college students as the evaluators. The students had some ideas for the book and found some confusing places that the writer, editor, and faculty reviewers had missed.

The flowchart in Figure 1.1 summarizes a typical document development and design process for an in-house project. The process—in-house or freelance—is not necessarily entirely linear. Writers draw on responses from editors, suggestions from subject matter experts, and results of usability tests in their revisions. As the document develops, the project definition may change. Some documents develop more simply, without technical reviews and usability tests.

The production process varies depending on whether the document will be printed or distributed in some other medium. In addition, the process depends on whether a company produces its own documents or contracts with commercial printers or web development specialists.

The Technical Part of Technical Editing

Text editing and production responsibilities are common to all kinds of editors: magazine and newspaper editors, academic journal editors, and the editors who work in commercial publishing houses on novels, trade books, and textbooks, as well as technical editors. All editors share some responsibilities for helping to make writing effective. Most also have some role in arranging for the publication and distribution of documents. The adjective technical does, however, distinguish some defining characteristics of the specific type of editing we are talking about in this text.
Technical Subject Matter and Method

Technical editors work on documents with technical subjects—that is, subjects that involve some technology like computer science and engineering, but also subjects that require particular expertise, like medicine and nursing, agriculture, government, education, and business. A technical editor may be employed in any field in which documents aim to help readers solve problems or gain information. Because they are dealing with specialized subject matter, technical editors often—although not always—have subject matter knowledge as well as language expertise.

Technical also suggests the method of working with the subject matter—to analyze, explain, interpret, inform, or instruct. The word derives from the Greek *technē*, which means “art and skill” and is also the source of the word *technique*. The art and skill of editing require knowledge of both the use of language and the methods by which we make sense of information.
Technical Genres

Technical editors typically work with the document genres (or types) that permit the transfer of information or that enable readers to act by making a decision or by following instructions. These genres include documents such as the following:

- instruction manuals and online help
- proposals
- feasibility studies
- research reports
- websites
- presentations
- program documentation

What Skills Does a Technical Editor Need?

The technical editor typically brings three main skills to the job, based on three critical pieces of the editing process. The editor must be skilled at approaching any document as an expert on the audience or reader for the document, an expert communicator, and an expert on language.

Reader Expert

One of the technical editor’s most important jobs is to envision the audience for a given document, and to understand what that audience needs from that document. This is also the writer’s job, of course, but writers will differ in their ability to put themselves in the place of their reader. An engineering professor who is used to publishing in technical journals (read by people very much like herself) may, for example, have trouble envisioning the audience for the grant proposal she is writing, which will be reviewed by a much more diverse group, some with no engineering expertise at all. Persuading an uninitiated audience about complicated subject matter can be exceptionally difficult. An editor is this researcher’s best friend. Editors are experts at envisioning what knowledge readers bring to the table, how they will use the document, and what information they need in the document.

Communication Expert

Technical editors take their knowledge of how readers use documents and employ that knowledge to shape a document’s content, organization, and arguments. As communication experts, editors have command of a wide range of genres, from simple office memos to operating procedures, to business proposals, to 200-page manuals, and understand how and why each of these might be used for a particular purpose. Editors also understand the importance of purpose and know how to make the message compelling—whether that message is designed to persuade a grant panel to fund a proposal or to help an IKEA customer put together a dresser.

In addition, good editors know options for visual design and media and understand the reasons for making choices among the options. They are visually, as well as verbally, sophisticated.
Language Expert

Finally, technical editors are language experts. They know the basic rules of grammar, usage, and style, and they know where to find help when they are unsure. They are comfortable with style guides. They can revise sentences and fix grammatical mistakes and are practiced at examining documents for correctness and consistency.

And also . . .

In addition to those three areas of expertise, excellent editors know how to do a number of things that make their work more successful. Good editors are able to deal with writers tactfully, manage projects efficiently, and learn new technical information readily. They also know when to double-check their instincts.

Technical Editors Deal Tactfully with Writers

People who like to have their writing critiqued are rare. Do you always appreciate an instructor’s constructive criticism? Probably not. Expecting our writers to react differently than we do is unrealistic. That said, there are ways to make the relationships with writers move more smoothly. We discuss writer relationships thoroughly in Chapter 3.

Technical Editors Manage Projects Competently

All editing involves project management, whether you are managing yourself on a deadline of three days or coordinating the contributions of a large team creating an enormous document over many months. Project management will be discussed throughout the textbook, and Chapter 24 is devoted to it.

Technical Editors Aren’t Afraid of Technical Information

Being able to learn new technical information is a skill—and one that can be learned. If you are anxious about your ability to absorb new technical information, don’t worry. Your instructor can offer exercises that will help you practice learning new technical information.

Technical Editors Double-Check Their Instincts

Technical editors must also—and this is extremely important—be willing to check things rather than assume they are right or wrong. There’s a famous story of an editor who changed every instance of the name “Isocrates” in a 200-page manuscript to “Socrates” because the editor had never heard of anyone named Isocrates. A simple check online would have notified the editor that there was, indeed, such a person. Additionally, however, that editor should have picked up clues: it’s rare for a writer to misspell something consistently for dozens of pages, especially when it’s the subject of the manuscript. The important thing to remember is that you, as an editor, must be willing to check.

If you are a technical editor, you are by definition editing technical documents; you will almost certainly edit a document about something you have never heard of at some point. You need to be willing to take the time to figure it out. How? There are many ways. Wikipedia and Google may not be the most precise academic references, but they can give you a basic understanding of a subject; for example, either one would have alerted that editor about the existence of Isocrates. If you are going to be working on a highly technical
project for a while, schedule a meeting with the writer or the subject matter expert to discuss the basics of the project—and ask questions when you don’t understand.

Angela Eaton & Associates, LLC, a freelance editing firm, use what they call “Stupid Science” meetings with clients whose federal grant applications they are editing—stupid because they ask questions that the clients (who are forewarned) will undoubtedly find simple, with obvious answers; science because they are asking for the critical technical information to be explained in layman’s terms. The editor arrives prepared, having read or skimmed all of the source documents the client provided and having looked up items she wasn’t sure about. She outlines her basic understanding of the project, the researcher corrects it, and then the editor asks additional questions that naturally arise or are on a prepared list. These meetings show the client that the editor is eager to ensure that her understanding of the project is absolutely correct. The meetings often save time that might have been spent in undirected research, and they help the editor identify the central persuasive features of the project—the ones that might convince the proposals readers to make the requested grant!

Using Your Knowledge

In refining your expertise and polishing these skills throughout the semester, you may find yourself looking at the world in ways you haven’t before. You may find that part-way through your editing course you start noticing apostrophes sprinkled throughout menus with no rhyme or reason, typographical errors in books, or inappropriate tone and unnecessary information in emails you receive. If the way you see the world is starting to change, that means the class is working—you’re becoming more sensitive to language and rhetoric and your abilities as a technical editor are growing.

Discussion and Application

1. Go to your favorite job advertising website and search on “technical editor” (if you have a membership to the Society for Technical Communication, use their online jobs database). How many jobs are there? Where in the country are the positions located? What job requirements do they list? What responsibilities are mentioned? How much experience do they request? If they specify a salary, what is it? Print out or download two advertisements that interest you and bring them into class, ready to discuss them.

2. Sign up for a technical editing electronic mailing list watch the posts for a week, and report to the class what you observed. If you belong to the Society for Technical Communication, join the Technical Editing Special Interest Group electronic mailing list. If you do not have any professional memberships, considering joining the Copyediting-L or TECHWR-L electronic mailing list. Professional memberships should not preclude joining one of these mailing lists. Just type the name of the electronic mailing list into a search engine to find the website that currently provides subscription information.