1. Given the equilibrium \(\text{PbCl}_2(s) + \text{H}_2\text{O}(l) \rightarrow \text{Pb}^{2+}(aq) + 2\text{Cl}^-(aq) \) for which \(\text{K}_{\text{sp}} = 1.7 \times 10^{-5} \).

A. What is the solubility of \(\text{PbCl}_2(s) \) in pure water?

B. What is the solubility of \(\text{PbCl}_2(s) \) in 2.50 \(\times 10^{-3} \) M lead nitrate solution?

C. What is the \(\text{Cl}^- \) concentration in pure water?

D. What is \(\text{Cl}^- \) concentration in 2.50 \(\times 10^{-3} \) M lead nitrate solution?
2. Given a solution in which $[\text{Ba}^{2+}] = 0.010\text{M}$.

A. What concentration of sulfate ion, SO_4^{2-} is required to just begin precipitating BaSO_4?

B. When the concentration of sulfate ion in the solution reaches 0.015M what concentration of barium ion will remain in solution?

3. Suppose you mix 100.0 mL of $0.0200\text{M} \text{ BaCl}_2$ solution with 50.0 mL of $0.0300\text{M} \text{ Na}_2\text{SO}_4$ solution. Will BaSO_4 precipitate?

4. If you have 150.0 mL of 0.0010M silver nitrate and to that solution you add 7.50 mL of 0.025M HCl will a precipitate form? Identify the precipitate.
5. Which is more soluble in pure water, silver chloride, AgCl(s) (Ksp = 1.8 x 10^{-10}), or silver chromate, Ag_2CrO_4(s) (Ksp = 1.8 x 10^{-12})?