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RICHARD GOMULKIEWICZ

Game Theory, Optimization, and

Quantitative Genetics

13.1 Introduction

Game theory, optimization, and quantitative genetics are among the most frequently
used theoretical approaches to study evolution by natural selection. Over the last few
years, the three methods have been carefully compared and contrasted (Pease & Bull
1988, Charnov 1989, Charlesworth 1990, Iwasa et al. 1991, Mangel 1992, Taper &
Case 1992, Abrams et al. 1993a,b). This chapter will summarize these comparisons,
describing how the approaches are used to study and predict evolutionary dynamics
and equilibria for traits that evolve by natural selection. Because all three theoretical
approaches consider the evolutionary roles of adaptation and constraint, a general
strategy will be proposed at the end of this chapter that an empiricist might wish to
follow when assessing the relative importance of adaptation and constraint in the’
evolution of behavioral traits in natural populations. )

Another goal of this chapter is to consider how game theory, optimization, and
quantitative genétic approaches apply to the evolution of complex characters such as
behavior. To this end. it will be helpful to introduce some terminology and notation
that will be used throughout. A complex character can often be thought of as a collec-
tion of component traits or a set of measurements. For example, an individual's forag-
ing behavior might consist of a number of basic elements (such as searching, han-
dling, consurning, and resting). Measurements of foraging behavior might then
consist of a set of durations of each element, Mating calls are another example of a
complex behavioral character for which the component traits of interest might include
a call's duration, energy, frequency, and so on. In this chapter, a column vector
2=(2:Z2, - - .+ 5)T will be used to denote a set of k measurements that together de-
scribe a complex character with k components. (The superscript “T" means vector
transpose.) For instance, if ¢ is a mating call, the vector components z, Z, Iy ...
might be, respectively, measures of call duration, energy, frequency, and so on. The
discussion below can be extended to characters with an infinite number of component
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traits (such as the set of potential sprint speeds that a lizard has over a range of
thermal environments), but this will not be done here [see Kirkpatrick & Heckman
(1989) and Kirkpatrick et al. (1990) for background].

The central aim of this chapter is to clarify when optimization, game theory, and
(uantitative-genetics approaches will lead to similar or different conclusions about
adaptation given the same basic information on fitness and constraints. Comparisons
will therefore be limited to conditions under which the approaches are equally appli-
cable and might be expected to give comparable results. To begin, the next section
will discuss how these methods are used to study the evolutionary dynamics of be-
havioral characters subject to natural selection.

13.2 Evolutionary Dynamics

Optimization methods were designed expressly to analyze evolutionary equilibria and
thus cannot be used to study the dynamics of adaptation. Game theory and quantita-
tive genetics approaches, however, can be applied for just such a purpose. This sec-
tion will compare the assumptions and methods of game theory and quantitative ge-
netics that are used in the study of evolutionary dynamics of a character’s mean. To
clarify the comparison, only continuous characters or strategies will be considered in
this chapter.

Consider a continuous c‘haracter (or strategy) z that evolves by natural selection.
Assume that generations ar¢ discrete and nonoverlapping and that before selection
the phenotypic distribution of z is described by the probability density function f(z).
Let w(z) be the fitness of phenotype z, which may depend on the distribution of z in

the population. After selection but before reproduction, the distribution of phenotypes
is

=20 (1)
where W is the population’s mean fitness:
w= [w(z)f(2) dz 2

(Integration here and below is assumed to be taken over all feasible values of z.)

By combining equation (1) with an appropriate description of the inheritance of
z, evolutionary (i.e., between-generation) changes in the phenotypic distribution can
be computed, at least in principle. Determining the between-generation change in the
complete distribution is, however, usually challenging, even when approximate meth-
ods are used. Fortunately, it is often useful for many purposes to study the simpler
problem of how the mean phenotype, Z, evolves, where

z= [zflz) dz (3)
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For this reason—and to greatly simplify the math—this chapter will focus on evolu-
tionary questions involving a population’s mean phenotype. Evolutionary forces such
as genetic drift and mutation are assumed to be negligible.

13.2.1 Standard Game Theory Approach

Standard evolutionary game theory assufii®s that phenotypes are asexually inherited
(Maynard Smith 1982) or have an autosomal one-locus haploid genetic basis
(Moore & Boake 1994). These assumptions are mathematically, if not biologically,
equivalent. If the resemblance between parental and offspring phenotypes is perfect,
then the offspring mean in the next generation, z', will be exactly the same as the
mean, z*, of the selected parents. That is, z'=z*=_[zf*(z) dz, where f*(z) is the
postselection distribution defined in equation (1). With such perfect asexual inheri-
tance, the between-generation change in the population mean phenotype, Az=2" -1,
is simply

Az=s (4)

where the selection differential, s = 2*— £, measures within-generation changes in the
population mean due to selection. A convenient way to rewrite equation (4) for a
complex character, like behavior, is

Az=PB (5)

where P is the phenotypic covariance matrix for the components of zand B=P"'s is
the selection gradient (Lande 1979). If the resemblance between a parent and its
asexually produced offspring is not perfect, but the regression of offspring phenotype
on parental genotype is linear, then the evolutionary dynamics of the population mean
phenotype can be described by

A7=G.B8 (6)

where Gy is the total genetic covariance matrix and j is the same selection gradient
as in equation (5).

Each element of the selection gradient, B=(B... .. B". describes the force of
linear selection acting directly on the mean of a particular trait component, holding
other components constant (Lande & Arnold 1983, Brodie et al. 1995). By compari-
son, the components of the selection differential, 5= (s, ..., 5,)", confound effects
of direct sclection on a trait and selection on correlated traits (Lande and Arnold
1983).

If fitness is frequency-independent (i.e., does not depend on the distribution of
phenotypes), the selection gradient 3 has the biologically interesting property that it
indicates the direction of evolution that would produce the steepest increase in popu-
lation mean fitness (Lande and Arnold 1983). However, equations (5) and (6) show
that whether parent and offspring phenotypes match perfectly or not, the evolutionary
response to selection will tend to deviate from the direction of most rapid increase in
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mean fitness, B (see Fig. 13.1). Such adaptive “inefficiency™ could be due to insuffi-
cient genetic variance for, or strong genetic correlations between, the traits being
selected (as reflected in the covariance matrix P or Gy). This interpretation of 3 can
break down if fitness is frequency-dependent, since even the most efficient evolution-
ary response (i.e., evolution in the direction of B) may reduce mean fitness in the
next generation. Still, Az will generally differ from g.

13.2.2 Quantitative Genetics Approach

The usual quantitative genetics approach used to study evolution assumes a sexually
reproducing population in which genetic variation and covariation of traits are af-
fected by many loci of small phenotypic effect (Bulmer 1985, Falconer 1989; other
genetic models could also be used but will not be considered here). Under these
assumptions, it can be shown (e.g., Lande 1979) that the evolutionary response to
selection of the mean phenotype is

Az=GB ' (1

where G is the additive-genetic (for brevity, “genetic”) covariance matrix and f is
the selection gradient defined above. As with the asexual models, equation (7) shows
that the evolutionary response to selection will generally differ from g (see Fig.
13.1).

Equation (7) does not require that G be constant to be valid. In fact, if G is
changed by selection, equation (7) will still correctly describe evolutionary (between-
generation) change in Z provided the regression of offspring on parental phenotypes
is linear (Bulmer 1985, p. 145; but see Hastings 1990, Nagylaki 1992). This implies
that equation (7) is accurate for at least a single generation (see Grant & Grant 1995
for an empirical demonstration). Turelli and Barton (1994) have shown theoretically
that G may be nearly constant over several generations for a broad range of selection
strengths. Moreover, assuming that G is constant in equation (7) over several genera-
tions may give a reasonably accurate approximation to the evolution of z, even if G
actually changes between generations due to conventional evolutionary forces. This
is because the mean often evolves much faster than the genetic variance (Barton &
Turelli 1987).

It is reasonable to expect that the accuracy of such an approximation will break
down after some period of time; however, it is an open question as to what the length
of that period will be (Turelli 1988). Empirical results suggest that G (or its general
matrix structure) may often be stable over fairly long evolutionary time scales (e.g.,
Lofsvold 1986, Kohn & Atchley 1988, Wilkinson et al. 1990, Arnold 1992). In any
event, there is no reason why evolutionary changes in G could not be incorporated
into equation (7). In fact, there are a number of ways this could be done; for example,
one could update estimates of G every few generations (in an empirical application)
or model the evolution of G using, say, an extension of Bulmer's infinitesimal model
(Bulmer 1971, 1985). Regardless of how one handles the evolution of G, the critical
point is that the constancy of genetic variances and covariances need not be an as-
sumption underlying quantitative-genetic models of evolution by selection of mean
phenotypes. Of course, the period over which individual fitnesses remain constant is
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Figure 13.1. Evolutionary responses to se-
lection in the mean of a two-component
character, 2= (Z,. ). Closed curves indi-
cate mean phenotypes with the same popu-
lation mean fitness, i.e.. contours of i, The
plus sign shows the location of the mean
phenotype with maximal mean fitness. The
common base of the three arrows lies at a
population’s initial mean phenotype.
Between-generation changes in the mean
phenotype. Az under perfect asexual inher-
itance and sexual inheritance are shown. re-
spectively. by the solid and dashed arrows.
The dotted arrow is the direction 3 fa-
vored by selection.

an equally important consideration when using any of the above models to draw
long-term evolutionary inferences.

13.2.3 Comparing Evolutionary Dynamics

How do the above game theory and quantitative genetics models of evolution com-
pare? The approaches are similar in that they use the selection gradient B to quantify
the within-gencration effects of selection on the mean phenotype. Another sharced
feature is that evolution generally does not proceed in the direction favored by selec-
tion (as indicated by B). even when parent and offspring resemble one another per-
fectlv [equation (5)]. However. for a given selection regime and pattern of
phenotypic/genotypic variances and covariances, evolution of the mean phenotype
should proceed in a direction most similar to B with perfect asexual inheritance and
least similar to 8 with sexual inheritance (see Fig. 13.1). This is because evolutionary
constraints that are apparent at the phenotypic or total genetic level (P or Gy) must
also occur at the additive-genetic level (G), but not necessarily vice versa (Pease and
Bull 1988; see below).
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Essentially, the only difference between game-theoretic and quantitative-genetic
models for evolutionary dynamics of the mean phenotype is in how within-generation
effects are assumed to be transmitted across generations. So provided that the basis
of trait inheritance is understood, there is no actual distinction between game-
theoretic and quantitative-genetic descriptions of the evolutionary dynamics of 7 un-
der natural selection. It turns out, however, that equilibrium predictions of the ap-
proaches can differ widely, as will be discussed in the next section.

13.3 Evolutionary Equilibria

Optimization, game theory, and quantitative genetics offer different ways to predict
evolutionary equilibria of continuous characters under selection. Game-theoretic ap-
proaches are appropriate when fitness is frequency-dependent (i.e., when individual
fitness depends on the distribution of phenotypes), while optimization methods are
appropriate  when fitnesses are frequency-independent. Quantitative genetic  ap-
proaches can be used to analyze equilibria for both types of fitness. The next two
sections compare these approaches for frequency-independent and, then, frequency-
dependent fitness. The dynamic stability of equilibria will not be considered here: see
Abrams et al. (1993b) for an interesting discussion.

For simplicity, assume that the distribution of phenotypes, f(z), is normal with
mean Z=(Z, ..., £)" and covariance matrix P. This condition is commonly satisfied
in natural populations when traits are measured on appropriate scales (see, e.g., Fal-

coner 1989). If the fitness function, w(z), is differentiable with respect to the compo-
nents of z, then

Var= fw(z)V:f(.:) dz+ff(z)V:w(z) dz=wP s +W (8)

where V.= (a/az,, 9/0z,, ..., dlaz,)" is the gradient operator with respect to compo-
nents of 7z, and W:Jf(;)v:w(:) dz is the mean gradient of individual fitness. Since
B=P"'s. equation (8) can be rearranged to express the selection gradient in terms of
population mean fitness and individual fitness as

V.w - V.w ©)
For a simple character (k= 1), equation (9) reduces to = ((fti‘/d.‘_'—Jr')n'/J:f{:) dz)hw,
an expression first given by Lande (1976). If fitness is frequency-independent, the
term -\7—;5 vanishes because V.w(z)=0 for every z; then equation (9) reduces to the
well-known equation = (Vo) =V.Ine (Lande 1979). If ftness is frequency-
dependent, W may or may not be zero, depending on the form of w.

13.3.1 Frequency-Independent Fitness

When fitness is frequency-independent, optimization approaches assume individual
fitness is maximized at an evolutionary equilibrium, possibly subject to phenotypic
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Figure 13.2. Optimization and quantitative genetics analyses of evolutionary equilibria for a
two-component character. (a) Thin lines are contours for individual fitness, w, as a function of
the character components z, and z,. The plus sign indicates the phenotype with highest indi-
vidual fitness, i.e., the global optimum. The thick curve shows a hypothetical constraint func-
tion, which determines the possible values of z, and 3. The filled circle shows the location of
the optimal phenotype, given these constraints. (b) Contours for mean fitness, o, based on the
individual fitness function shown in (a). Scales for 7, and Zy are the same as for z; and z,
above. The fixed fitness difference between contours in (b) is the same as in (a), so the topog-
raphy of v is less rugged than w. The plus sign indicates the mean phenotype associated with
highest mean fitness, i.e., the global optimum. The dashed line represents the evolutionarily
accessible directions given the constraint in (a); this line is also drawn in (a). The filled circle
is the constrained optimum. The position of the constrained (unconstrained) optimum in (a) is
similar to the corresponding optimum in (b).

constraints (reviewed in Parker & Maynard Smith 1990). That is, the predicted equi-
librium phenotype maximizes w(z), perhaps subject to satisfying a set of constraints.
For example, if w(z) were smooth and there were no constraints on z, then the optimal
phenotype Z would be a solution of the equation

Va()=0 (10)
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where V.= (a/dz), dlazy, ..., daz)7 is the gradient with respect to components of z,
Figure 13.2a illustrates this approach when individual fitness depends on a character
with two trait components, ¢ = (2).25), such as a mating call characterized by its dura-
tion (z) and intensity (25). Without constraints, fitness is globally maximized at an
evolutionary equilibrium (indicated by the plus sign), whereas with constraints, fit-
ness is maximized at equilibrium (filled circle) to the extent possible given the con-
straints (heavy curve).

A quantitative genetics analysis of frequency-independent selection starts with
the basic evolution equation (7). An equilibrium mean phenotype. . must be a solu-
tion of Az=GB=0. Because individual fitness is frequency-independent, Vav=0 in
equation (9) (see above), so that 7 need only satisfy the simpler

Ad§=cﬁ|§=c%:—r' =0 (n

&l

where the notation “|:" means evaluated at

Equation (11) may be satisfied in two qualitatively different ways. First, Az:=0
if Vapl:=0. In this case, 7 globally maximizes mean fitness, W (Fig. 13.2b, plus
sign). This represents an “ecological optimum™ in the sense that there is no net linear
selection on Z. Such an equilibrium will eventually be reached, even if G varies
through time, provided that there are no persistent genetic barriers to evolutionary
change (such as lack of heritable variation or sufficiently strong genetic correlations:
see below) and may be reached even if such constraints are ever-present, but chang-
ing (Hammerstein 1996, this volume). _

Alternatively, an equilibrium could occur with the population not at an ecological
optimum (i.e., with Vat|:#0) if there is a lack of appropriate genetic variation, as
reflected in G (see below). In this case, W is not globally maximized at equilibrium;
rather, v is maximized over a subset of “evolutionarily accessible” directions for the
mean phenotype (filled circle in Fig. 13.2b). Evolutionarily accessible directions can
be thought of as the complement of the set of “evolutionarily forbidden" directions
(Kirkpatrick & Lofsvold 1992), which is the set of all selection gradients that would
produce no evolutionary response in the current population. The notion of “evolution-
arily forbidden™ directions gives a quantitatively precise and biologically useful defi-
nition of an important type of evolutionary constraint (Arnold 1992),

Mathematically, evolutionary constraints are present whenever the additive-
genetic covariance matrix G is “singular” (i.e., at least one of its rows is a linear
combination of the other rows), The corresponding evolutionarily accessible and for-
bidden directions are described by the eigenvectors associated with, respectively, non-
zero and zero eigenvalues of G. (G must have at least one zero eigenvalue if it is
singular.) These constraints will limit evolutionary responses to accessible directions
(the dashed line in Fig. 13.2b). Note that some authors have assumed that genetic
correlations merely slow evolution but do not prevent ultimate optimization. Not only
is this incorrect (e.g., see Fig. 13.2b), but even small genetic correlations may be
consistent with equilibrium populations that are far from their ecological optima
(Dickerson 1955, Via 1987, Gomulkiewicz & Kirkpatrick 1992, Kirkpatrick and Lof-
svold 1992),
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For a given set of fitnesses and constraints. how similar are the equilibria pre-
dicted by optimization and (uantitative genetics approaches? The two approaches
give quite similar results, at least under some  circumstances (Charnov 1989,
Charlesworth 1990. Iwasa et al. 1991, Taper & Case 1992, Abrams et al. 1993q).
Specifically, the function that describe- individual fitness, wi(-), must be analyviic,
which is to say it can be represented by o Taylor series that converges to wiz) for
every < (see, e.g.. Marsden & Tromba 1988). If, in addition. terms above a certain
order in the Taylor series are small, then an equilibrium predicted by one approach
will be close to that predicted by the other. The rationale in the case of a two-
component character, z=(z,,z,), goes as follows. By assumption, w(z) can be ex-
panded in a Taylor series around the current population mean I=(0.5)

( ( )+0w! ( )+ilu'
W) =w(@+—| (z,—2 —
v L " a:l . 1 ] 822

(z;—5)

1o 4 Pw atw
+”2*[3:? :(z. _:I)-+2‘7_3|33_2 L(:. =Nz -2+ -FJT% :(23—22)2 P win
(12)
Substituting (12) into equation (2) leads to the following expansion for v
1[a*w @ P w
w=w+s |l P +2— P, +— P 5 o 13
R 2 [a;f " az,0z, 2 a3 22] % e

where P, is the phenotypic variance of component z; (i=1, 2) and Py, is the pheno-
typic covariance between 2y and 2,. The derivation of (13) relies on the facts J{L,—f,
f2) dz=0. Jiz;=2)*A2) dz=P,,, and f(z, —2)(5; = 2)f(z) dz=P,,. From (13) it fol-
lows that == w(2) if all terms involving products with second and higher derivatives
of w(z) are small. Thus, under these conditions, a mean phenotype that maximizes
population mean fitness 1t will also approximately maximize individual fitness Wiz
and vice versa. This correspondence is shown by the similar positions of the global
optima in the upper and lower panels of Fig. 13.2.

The preceding argument can be extended 100 analyses involving evolutionary con-
straints. Continuing with the above example, suppose that z,=/h(z,). For example.
this might describe tradeoffs between call duration and intensity imposed by an or-
ganism'’s energetic capacities. If h(z)) is differentiable, the optimal phenotype satis-
fying this phenotypic constraint can be determined by solving the equation

dh(zy)  aw/iz, (14)
dz n/iz,

for z; (Charnov 1989), Adapting the methods of Charlesworth (1990), it can be
shown that given the constraint Z2=N(z)), an equilibrium mean phenotype for the
quantitative genetics model must satisfy

dh(z)) _ ﬁr')lf'/ﬂz, ’ (15)
dzy |, vz, |, i
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If higher-order terms in the expansion (13) of v are small, then d\/9z, = dw/dz, for
i=1, 2. Thus, any 7 that satisfies (15) will also approximately satisfy (14) and vice
versa. This shows that, with or without constraints, optimization and quantitative
genetics methods will predict roughly the same equilibrium phenotype when appro-
priate mathematical conditions are met.

13.3.2 Frequency-Dependent Fitness

When individual fitness depends on the distribution of phenotypes—in particular, on
the mean z—an equilibrium phenotype can be predicted on the basis of being an
“evolutionarily stable strategy” (ESS) or a stationary point of the quantitative-
genetics model (7). These two approaches will be discussed in turn. Individual fitness
will be denoted w(z, Z) to emphasize its dependence on Z.

The concept of an ESS was developed as an extension of game theory to evolu-
tionary biology (Maynard Smith 1982, Parker and Maynard Smith 1990). Briefly, a
mean phenotype £ is an ESS if it is its own “best response” (Bulmer 1994). (For
simplicity, assume this best response is unique.) The best response to a mean pheno-
type 7 is the phenotype z that maximizes individual fitness, w(z, 2), holding 7 con-
stant. If w(z, 2) is differentiable with respect to its first argument, then a best response
to Z can be found by solving V.w(z, 2)=0 for z. In this symbolism, a phenotype that
is its own best response (i.e., is an ESS) must be a solution £ of

V(@ 2)|,=p-,=0 16)

A graphical illustration of ESS analysis for a two-component trait z=(z,, z,) is shown
in Fig. 13.3. Note that an ESS defined by (16) may not be an equilibrium for the
“standard” game-theoretic model discussed above [equation (5)] if B+ 0 when 7=%.

In the quantitative genetics approach, determining evolutionary equilibria when
fitness is frequency-dependent again begins with equation (7). Assuming phenotypes
are normally distributed, an =quilibrium mean phenotype is a solution Z of

Vw—V.w(z 2
AZ'IE-=G'B|§=G___LW_WM =0 (17

i

[see equations (7) and (9)]. As for frequency-independent fitnesses, there are two

qualitatively different ways equation (17) may be satisfied. First, Afl:=0 if

Vv =V.auz 2) when 7=%. Such a solution represents an equilibrium that would be
reached in the absence of genetic constraints. Although 7 will not maximize mean
fitness if Vw(Z) #0, it is an “ecological optimum™ in the sense that there is no net
force of linear selection acting to change the mean when Z=7. In contrast, Z may be

3?) J J\

Nt <>

Figure 13.3. ESS analysis for a two-
component character z=(z,, z,). Indi-
vidual fitness surfaces, w(z, 2), for
four mean phenotypes (plus signs) are
shown. On each surface, the filled cir-
cle represents the “best response” to .
In the bottom panel, 7 is its own best
response, i.e., it is an ESS.
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a solution of (17) even though VareUw(z, 1) at cquilibrium because of genetic
constraints indicated by the singularity of G. The net force of linear selection on the
mean is not zero (ie., 7 is not at an ecological optimum). At such an equilibrium,
selection will favor changes in evolutionarily forbidden directions but have no net
effect in evolutionarily accessible directions.

ESS and quantitative genctic analyses have been compared in several theoretical
studies (Charlesworth 1990, Iwasa et al. 1991, Mangel 1992, Taper & Case 1992).
The following generalizes the approach used by Abrams et al. (1993a.b) to multivari-
ate characters. Assuming that the individual fitness function wi(z, £) is analytic in the
argument z, then

Vor=Vu(z, 2) V.F(z 2).,

e 18
'8 W W s
where F(z, 2) is defined as
3wz, 2) Pz, :))
(7, D) =w(z, 7 ';E ..*,~+2§’.w+'_,, 19
‘r((.. 4.) “’{(.. )+ /( . P” 027 ,-<jl ij I:)Z,‘(.)Z’ ( }

F has the property Fiz, == Wwl.. If the terms of expansion (19) involving second and
higher derivatives of wiz, ) are small, then F(z, 7) = w(z 2) so that V_F(z, 2) =
Vav(z, 2). This implies thal, at least under these conditions, a phenotype satisfying
the ESS condition (16) will approximately satisfy the equilibrium equation (17). (In
addition, this shows that an ESS defined by (17) will only be an approximate equilib-
rium for the “standard” game theory model described above [equation (5)] because it
is generally only approximately zero at an ESS.) The above arguments can be ex-
tended to cases in which phenotypic constraints are present (see Charlesworth 1990),
Once again, ESS and quantitative genetic equilibria will be close under the appro-
priate mathematical conditions.

Taken together, the resuits of this section demonstrate that, at least under certain
mathematical conditions, an optimization or ESS analysis will predict roughly the
same equilibrium as the comparable quantitative genetics analysis, with or without
phenotypic constraints. The next section will consider the extent to which these con-
ditions might or might not hold in practice.

13.4 Dissimilaritics

The last section showed that optimization or ESS methods will predict equilibria
similar to those using quantitative genetics methods provided that three conditions
hold: (1) The function describing individual fitness, w, must be analytic, (2) terms in
the expansion of w or F(z, 2) involving higher-order derivatives of w and their coef-
licients must be small, and (3) constraints that occur at the additive-genetic level
must also appear at the phenotypic level. The extent to which an evolutionary equilib-
rium can be considered a common prediction to quantitative genetic and optimization
(or ESS) analyses depends on how often the above three conditions hold in situations
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of biological interest, (Technically, the previous section only showed that the three
conditions are sufficient since the methods may predict similar equilibria under other
circumstances.) In this section | argue that there are many biologically realistic situy-
tions in which at least one of these conditions fail and that. in those situations, the
different methods generally give widelv different results. This suggests that the extent
to which optimization/ESS and quantitative genetics results agree may be substan-
tially limited. For simplicity, only one-component characters will be considered in
this section, although the situations described below can easily arise for more com-
plex characters.

The outwardly most innocuous of the above three requirements is that the individ-
ual fitness function must be analytic. Mathematically, this means that the Taylor series
of the fitness function must converge o w(z), or w(z, 2), for every value z (e.g., Mars-
den & Tromba 1988). Although analytic functions enjoy widespread use in the theoreti-
cal and statistical literature, this requirement is not met in a number of biologically im-
portant circumstances, of which just three examples will be considered.

The first example is a “threshold character” model for the evolution of strategies
in a two-person, two-strategy game, such as the Hawk-Dove game (Maynard Smith
1982). A threshold character is a character with discrete states that are not inherited
in a simple way (Falconer 1989). If the inheritance of strategies is not simple, then it
is reasonable to model the set of strategies as a threshold character. In such a maodel,
the expression of each character state (strategy) is assumed to depend on an underly-
ing continuous “liability.” Consider, for example, a two-strategy game with pure Strat-
egies A and B. Let z denote the liability. Assume that an individual with z=T plays
strategy A and plays strategy B otherwise.

If the distribution of z is normal with a fixed variance P, then the proportion of
individuals playing strategy A or B is a function of the mean liability, # (Charlesworth
1990). In particular. the proportion playing A is F'){(T—:)/\ﬁ’]. where () is the
cumulative distribution function of the standard normal distribution. Now suppose Ey
is the fitness payoff to strategy / in a contest with an opponent playing strategy /.

Then the expected fitnesses for strategies A and B in a population with mean 7 are,
respectively,

(5o

(20a)

T~ Tt

wp(2)=E, (~)(—$) “E [1 = ()(%)]
B BA N BB N
The (frequency-dependent) individual fitness function for the liability z is thus
s s
W 2= {"’M et | (20b)
Wwp(Z) ifz>T

(see Fig. 13.4a). Provided that WA(2) # wp(2). w(z, 2), is discontinuous at the threshold
point z=T and cannot be analytic. Moreover, the ESS analysis for the continuous
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Figure 13.4. Individual fitness functions, w(z) or w(z, ), that are not analytic.

(a) Fitnesses for a two-person, two-strategy game with pure strategies A and
B as described in the text (eq. 20). (b) A continuous fitness function with a
discontinuous first derivative. (¢) Fitness functions estimated using non-
paramelric regression. Taken from Figure 2 of Schluter (1988), which is
based on data from Houde (1987). Shown is mating success of male gup-
pies, Poecilia reticulata, as a function of the percentage of body area that is

colored orange. Curves correspond to fitness function estimates obtained us- -

ing different levels of a smoothing parameter. See Schluter (1988) for de-
tails. Figure (c) used by permission of The Society for the Study of Evolu-
tion.
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trait z [see equation (16)] is inconclusive because dw(z, #)/Hz=0 for all z# T By

comparison. the associated quantitative genetics equilibrium analysis [equation (17)]

requires that an equilibrium £ must be a solution of the equation dw/dz = dw/dz, where
w(D) = wA(Z)G)(-J;;) + wB(z)[l *-@(

g )

) - ()

The equilibrium condition for z reduces to E G+ E p(l —§)=Ep,§+ Eggll — §).
where q‘7=®[(T—'z°)f\/F] is the proportion' playing strategy A at equilibrium. This is
exactly the proportion predicted by the more familiar “discrete” analysis of this game
[Maynard Smith 1982, equation (2.5)].

The above threshold model was, of course, chosen to illustrate how widely dif-
ferent ESS and quantitative genetics analyses can be when a fitness function is not
analytic. It may be possible to overcome problems, like an inconclusive ESS analysis.
if it were based on a different phenotypic model or scale (Charlesworth 1990). For
instance, an alternative continuous trait model might let z be the probability of play-
ing strategy A and 1—z the probability of playing B. Then individual fitness takes
the form w(z, 2)=zw,(2) + (1 — 2)wp(2), which would produce similar results whether
using an ESS or quantitative-genetics analysis. In any case, the main point is simply
that one should not assume by default that ESS and quantitative-genetics analyses of
a given model will yield similar predictions.

The discontinuous relationship between fitness and phenotype in the last example
may seem like an exceptional case with the awkward property that the fitness func-
tion is not analytic. In fact, there is an extremely large class of continuous—and even
smooth—f{itness functions that are not analytic. Figure 13.4 shows two examples. In
Fig. 13.4b, fitness increases monotonically over lower values of z and is constant for
larger z. This might describe, for example, how reproductive success depends on
some measure of courtship display intensity. The function in Fig. 13.4b is continuous,
but not smooth. It is not analytic because it has a discontinuous first derivative.
Schmid et al. (1994) present methods for estimating nonsmooth functions like Fig.
13.4b, and they describe several empirical examples of such functions. They suggest
that nonsmooth relationships are common in biology. The fitness functions in Fig.
13.4c were estimated from data using nonparametric regression methods (Schluter
1988, Schluter & Nychka 1994). Such estimates, while smooth, are not analytic be-
cause they are cubic splines. (Cubic splines are smooth but have discontinuous sec-
ond derivatives.) Consequently, equilibria predicted using quantitative genetics or op-
timization/ESS methods based on these fitnesses may differ substantially. Other
biological situations might conceivably involve even smoother fitness functions that
have discontinuities in their higher-order derivatives and, thus, are not analytic. The
difference between quantitative-genetics and optimization/ESS methods need not de-
cline with increasing degrees of discontinuity. So, even for cases of very smooth

and

aw dw ,(2)
—=—4—"0
a9z dz (
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fitness functions in which only a high-order derivative is discontinuous, large differ-
ences may exist between equilibrium analyses.

Optimization/ESS and quantitative-genetics approaches may predict very differ-
ent equilibria even if a fitness function is analytic. This will occur if the terms involv-
ing derivatives of second and higher order in the expansion of W or F(z, 2) [see
equations (13) and (19)] are not small. For example, w(2) will not be a good approxi-
mation of 1 if the higher-order terms, such as VP PW/Az + 20%w/02 92, + Poydw/
az3]|.. are not negligible [see equation (13)]. For such terms to be small. not only
must the higher-order derivatives of w(z) not be too large, but the magnitudes of the
phenotypic variances and covariances cannot be large. It is not difficult to construct
hypothetical, but biologically plausible, fitness functions and phenotypic distributions
in which these terms are large—as are the resulting differences between optimization
(ESS) and quantitative-genetics analyses (Kirkpatrick & Gomulkiewicz, unpublished
results). The “corridor model” of adaptation analyzed by Biirger (1986) is an example
involving frequency-independent selection on more complex characters in which
higher-order terms are not negligible. In that model, phenotypes that maximize w do
not even approximately maximize in the absence of constraints.

Finally, optimization and quantitative genetics methods may predict widely dif-
ferent equilibria for fitness functions and phenotypic distributions that do not suffer
from either of the above “problems.” This can occur whenever evolutionary con-
straints (as reflected in G) are not apparent at the phenotypic level (as reflected in P).
Charlesworth (1990) showedithat if characters have more than two components, there
is no simple relationship between genetic and phenotypic correlations. In fact, these
correlations may have opposite signs for a particular pair of traits. This implies that
the correlations underlying phenotypic constraints may often not correspond to corre-
lations that are responsible for evolutionary constraints.

In addition to this lack of correspondence between the form of genetic and phe-
notypic constraints, it is possible (and even likely with a more complex character)
that certain genetic constraints will be completely masked at the phenotypic level.
(This is the extension to complex characters of the situation in which a phenotypi-
cally variable trait is not heritable.) Conversely, every phenotypic constraint must
also appear as a genetic constraint, These properties follow from Pease & Bull
(1988), who proved that if P is singular, then so is G, but not vice versa. (Technically,
the “null space” of G contains that of P.) Taking their results a step further, it can be
shown that G can actually be “more singular” (has a larger null space) than P, for
traits with more than two components. That is, there may be fewer evolutionarily
accessible dimensions associated with G than with P even if both matrices indicate
at least one evolutionarily forbidden direction. In this situation, equilibrium predic-
tions made using optimization/ESS methods that rely on phenotypic constraints could
be greatly different from those made using quantitative-genetics methods that use
additive-genetic constraints. The magnitude of such a discrepancy could be quite
large under biologically realistic conditions. Because the potential for constraints in-
creases with the dimensionality of a trait (Dickerson 1955, Gomulkiewicz & Kirkpat-
rick 1992), this source of dissimilarity should be increasingly important for a more
complex character, like behavior.

To summarize, there appear to be many biologically plausible and important
circumstances in which equilibria predicted by an optimization or ESS analysis on

Game Theory, Optimization, and Quantitative Genelics 299

the one hand and a quantitative genetics approach on the other can differ greatly.
This argues strongly against assuming by default that the approaches will provide
similar equilibrium predictions. Establishing the conditions under which the analyses
are assured to give similar results would involve verifying that the fitness function is
analytic, that higher-order terms are negligible, and that genetic and phenotypic con-
straints are the same,

13.5 An Empirical Strategy for Detecting Adaptation and Constraint

Given the potential for disparity between distinet theoretical approaches, empiricists
may wonder if there are methods available that would help them 1o independently
assess the influences of adaptation and constraint in natural populations. In fact there
are. Most of the methods discussed here were developed (originally by Lande &
Arnold 1983) with quantitative genetics analyses in mind; however, many of them do
not require genetic data. The volume by Boake (1994) contains an excellent introduc-
tion to, and survey of. these methods as applied to behavioral characters. See Brodie
et al. (1995) for a succinct review.

This section will outline an empirical strategy for resolving the roles of adapta-
tion and constraint in an cquilibrium population, similar to one proposed by Gomul-
kiewicz and Kirkpatrick (1992). The strategy’s main advantage is that it is structured
so that the least data-intensive steps are completed first; if a satisfactory explanation
is attained with the relatively simpler tests, the subsequent more laborious steps can
be avoided. It is crucial to bear in mind that this scheme applies only to populations
that are known to be, or can reasonably be assumed to be, at equilibrium. The proce-

dure shares many similarities with the more general proposals of Reeve and Sherman
(1993).

Step 1: Test for adapiation. At a minimum, this step requires data on the relation-
ship between phenotype and fitness. It may also require information about the pheno-
typic distribution. To assess adaptation and constraint in a equilibrium population. il
is simplest (though not usually simple!) to begin by testing whether or not the popula-
tion’s mean phenotype is experiencing directional selection, One way this can be
done is to determine the selection gradient, B, which can be estimated as the vector
of partial regression coefficients of relative fitness on phenotype (reviewed in Arnold
1994, Brodie et al. 1995). One could also estimate B using equation (9) if an estimate
of the fitness function, based on naturally occurring or artificially created variants, is
available (e.g., Schluter 1988, Schluter & Nychka 1994, Brodie et al, 1995) and if
phenotypes in the population are normally distributed. If B=0. the mean is under no
selection to change, which suggests that it is at an ecological optimum. Alternatively,
one could determine if the distribution of phenotypes is consistent with the predicted
ecological optimum. For example, Reeve and Sherman (1993) suggest that the most
adapted phenotype should be predominant. If either alternative is satisfied, a reason-
able conclusion is that the population occupies an ecological optimum. That is. con-
straints are probably playing a minor role, compared to adaptation, in maintaining the
current population distribution. If g is significantly different from zero or the popula-
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tion deviates from the expected distribution, then constraints ‘are probably having an
important effect.

Step 2: Detect phenotypic constraints. This step requires an estimate of the popu-
lation's phenotypic covariance matrix, P, which can be estimated directly or inferred
from a known constraint function (see, e.g., Charnov 1989). Phenotypic constraints
are implied if P is singular. Note that determining whether or not the true P matrix
is singular is a mathematically nontrivial task since estimates of P may fail to be
non-negative definite. This problem can be partly circumvented using a procedure
developed by Shaw and Geyer (1993) that constrains estimated covariance matrices
to be non-negative definite.

If P is singular, then genetic (evolutionary) constraints must be present (Pease &
Bull 1988). However, the phenotypic correlations may not correspond to the con-
straining genetic correlations (Charlesworth 1990). Despite this limitation, detecting
the presence of evolutionary constraints may be of great value, even if the exact
causes are obscure. ‘

If phenotypic constraints are detected, constraints revealed by P may not provide
a sufficient explanation for equilibrium, since G may be “more singular” than P (see
above). Given reasonable estimates of P and S, one could test this question for the
quantitative genetics approach by computing the product PB. If PB=0, then the
population is probably at an ecological optimum given the constraints indicated by P.
If, however, P is significantly different from zero, then important genetic constraints
may be hidden at the phenotypic level.

Step 3. Determine genetic constraints. This level of analysis requires knowing
additive-genetic variances and covariances, which can be estimated using individuals
of known relationship (such as parents and their offspring or sibling groups). For
overviews of estimation techniques, as well as references to more specialized sources,
consult Falconer (1989), Simms and Rausher (1992), and Arnold (1994). The result
will be an estimate of the additive-genetic covariance matrix, G, for components of
the character z. As in Step 2, genetic constraints are detected if G is singular. In the
quantitative genetics framework, these constraints would provide a reasonably suffi-
cient explanation of the equilibrium if the matrix—vector product G were indistin-
guishable from zero.

Step 4. Explore other explanations. If the roles of adaptation and constraint are
not sufficiently resolved in Steps 1-3, then a number of other factors (apart from
sampling error) merit consideration. First, the population may in fact not be at equi-
librium, Second, the characters under consideration may be constrained by traits that
have not been measured. Third, other evolutionary forces, such as migration, muta-
tion, or parental care, may be strongly opposing selection. )

Al worst, a statistically powerful study that follows some or all of the above
steps can rigorously establish that certain a priori reasonable explanations for equilib-
rium do not apply. (Moreover, it may be possible to use the parameter estimates to
predict future evolutionary changes. See Grant & Grant 1995.) However, if all goes
well, such a study would provide a clear quantitative assessment of the importance
of adaptation and constraint in maintaining a population’s equilibrium.
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13.6 Conclusion

This chapter has attempted to compare and contrast three methods for analyzing
adaptive evolution of behavioral traits: optimization, game theory, and quantitative
genetics. First, it was pointed out that only game-theory and quantitative-genetics
approaches are appropriate for studying evolutionary dynamics. Provided that the
genetic basis is understood, these two approaches are basically identical (except for
the terminology). All three approaches can be used to predict evolutionary equilibria
that result from natural selection given information about fitness and constraints. Op-
timization and quantitative-genetics methods are used- when fitness is frequency-
independent, while ESS and quantitative genetics approaches apply when fitness is
frequency-dependent. Given that certain mathematical conditions are satisfied, equi-
libria predicted by an optimization or ESS analysis versus a quantitative genetics
analysis will be similar. However, if these mathematical prerequisites are not met
(as probably occurs in many biologically plausible situations), then their respective
equilibrium predictions may be substantially different. Finally, an empirical strategy
is proposed for detecting and quantifying the roles of adaptation and constraint in
maintaining equilibrium populations.

There is another distinction between game-theory/optimization and quantitative-
genetics approaches that needs mentioning. Game theory and optimization thinking
may be especially useful for understanding .the ecological and behavioral bases of
individual fitness. In contrast, individual fitness is always input to (rather than output
from) quantitative-genetics analyses (Mangel & Ludwig 1992). That is. quantitative
genetics does not provide a framework for predicting individual fitness functions or
selection gradients from ecological and behavioral first principles (although it pro-
vides methods for measuring such fitness inputs). Quantitative-genetics methods do,
however, provide powerful means for deducing evolutionary constraints and for ex-
amining the evolutionary consequences of natural selection. Still, the time horizon
over which quantitative-genetics estimates remain accurate is not certain (Turelli
1988), whereas there is some evidence that optimization approaches provide reason-
ably good predictions of evolutionary patterns over very long time scales (e.g., Char-
nov 1993). This suggests that optimization, game-theory, and quantitative-genetics
approaches all have important roles to play in the development of a more complete

understanding of evolution by natural selection.
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