Lecture 8: Selection (Cont’d)

- Basic selection model
- Selection and Polymorphism
- Balancing selection
- Underdominance & Overdominance
- Mutation as an evolutionary force
Selection against B_2

- Adaptive landscape for B_1: the variation in average fitness over the range of allele frequencies

Genotype: B_1B_1 B_1B_2 B_1B_2
Fitness (Abs): 1.0 0.75 0.5

\[\bar{w} = p^2w_{11} + 2pqw_{12} + q^2w_{22} \]
Selection against B_2

"adaptive landscape"

Mean fitness, w

All $B_2 B_2$, $w = 0.5$

All $B_1 B_1$, $w = 1.0$

Frequency of B_1 allele (p)
Selection against B_2

Mean fitness vs. Frequency of B_1 allele (p)
Rate of evolution

Genotype: \(B_1B_1 \quad B_1B_2 \quad B_1B_2 \)

Fitness (Abs): \(1.0 \quad 0.75 \quad 0.5 \)

\[\Delta p = \left(\frac{p}{\bar{w}} \right) \left(pw_{11} + qw_{12} - \bar{w} \right) \]
Selection: a recessive lethal

Genotype: \(B_1B_1 \) \(B_1B_2 \) \(B_2B_2 \)

Fitness: 1.0 1.0 0.0

\(B_2 \): a recessive lethal

\(s \) = selection coefficient = -1.0

- difference in selection of one genotype versus others
Selection: a recessive lethal

Genotype: \begin{tabular}{c} B_1B_1 \ B_1B_2 \ B_2B_2 \end{tabular}

Fitness: \begin{tabular}{c} 1.0 \ 1.0 \ 0.0 \end{tabular}

\[
q' = q^2w_{22} + pqw_{12} / \bar{w}
\]

- Substitution

\[
q' = q / (1+q)
\]
Why does the rate of evolution slow down?

- $w_{11} = 1.00$
- $w_{12} = 1.00$
- $w_{22} = 0.00$

 ($s_{22} = 1.0$)

Frequency of recessive allele after 500 generations = 0.002
Tribolium example

<table>
<thead>
<tr>
<th>Gen</th>
<th>Fr(lethal)</th>
<th>% in het's</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.500</td>
<td>50.0</td>
</tr>
<tr>
<td>10</td>
<td>0.091</td>
<td>90.9</td>
</tr>
<tr>
<td>100</td>
<td>0.010</td>
<td>99.0</td>
</tr>
<tr>
<td>1000</td>
<td>0.001</td>
<td>99.9</td>
</tr>
</tbody>
</table>

- \(w_{11} = 1.00 \)
- \(w_{12} = 1.00 \)
- \(w_{22} = 0.00 \)
 - \(s_{22} = -1.0 \)

Frequency of recessive after 500 gens = 0.002

“masked” from selection
Tribolium example

- As lethal allele becomes rare, rate of evolution slows
Selection and polymorphism

- Selection against alleles: leads to “fixation” of favored allele
- Polymorphism: A population, locus, or trait with more than one allele or phenotype
How can selection maintain polymorphism?

Maintained by selection

- Heterozygote advantage
- Frequency-dependent selection
- Mutation/selection balance
- Variable selection in time
- Variable selection in space (+ immigration)

Balancing Selection
Selection on heterozygotes

Selection on one homozygote and heterozygote the same:

\[w_{11} = w_{12} > w_{22} \]

leads to fixation
Selection on heterozygotes

- Heterozygote advantage: overdominance
 \[w_{11} < w_{12} > w_{22} \]

- Heterozygote disadvantage: underdominance
 \[w_{11} > w_{12} < w_{22} \]
Selection on heterozygotes

Allele frequencies: \(Fr(A) = p \) \(Fr(a) = q \)

Genotype: \(AA \) \(Aa \) \(aa \)

Frequency (z): \(p^2 \) \(2pq \) \(q^2 \)

Fitness (abs): \(w_{11} \) \(w_{12} \) \(w_{22} \)

Fitness (abs): \(1+S \) \(1 \) \(1+T \)

\(S, T < 0: \) Overdominance

\(S, T > 0: \) Underdominance

Box 5.8
Selection on heterozygotes

Allele frequencies: \[\text{Fr}(A) = p \quad \text{Fr}(a) = q \]

Genotype: \[AA \quad Aa \quad aa \]

Frequency (z): \[p^2 \quad 2pq \quad q^2 \]

Fitness (abs): \[w_{11} \quad w_{12} \quad w_{22} \]

Fitness (abs): \[1 + S \quad 1 \quad 1 + T \]

\[\Delta p = \frac{p}{\bar{w}}(pw_{11} + qw_{12} - \bar{w}) \]

When will \(\Delta p = 0? \)

\(p = 0, \quad p = 1, \) or \(p = \hat{p} \)

\[\hat{p} = \frac{T}{S + T} \]
Overdominance

Allele frequencies:
- Fr(A) = p
- Fr(a) = q

Genotype:
- AA
- Aa
- aa

Frequency (z):
- p²
- 2pq
- q²

Fitness (abs):
- w_{11}
- w_{12}
- w_{22}

Fitness (abs):
- $1 + S$
- 1
- $1 + T$

\[
S = -0.4 \text{ and } T = -0.6
\]

\[
\hat{p} = \frac{-0.6}{-0.4 + -0.6} = 0.6
\]
Adaptive Landscape: Overdominance

Equilibrium (stable)

Fig 5.20
Stability of equilibrium allele frequency

\[\Delta p \]

Fig 5.20

\[p = 0.0 \quad p = 0.6 \quad p = 1.0 \]

\[p = Fr(A) \]
Heterozygote advantage in *Drosophila*

\[w_{VV} = 0.735 \]
\[w_{VL} = 1.0 \]
\[w_{LL} = 0.0 \]
\[S = -0.265 \]
\[T = -1.000 \]

\[\hat{p} = \frac{T}{S + T} \]
\[\hat{p} = 0.791 \]
Heterozygote advantage in *Drosophila*

- $w_{VV} = 0.735$
- $w_{VL} = 1.0$
- $w_{LL} = 0.0$
- $S = -0.265$
- $T = -1.000$
- $\hat{p} = \frac{T}{S + T}$
- $\hat{p} = 0.791$

Figure 5.18
Adaptive Landscape: Underdominance

Fig 5.20

$S = 0.4$ and $T = 0.6$

Equilibrium (unstable)
• Evolution under selection is slow when recessive alleles reside in heterozygotes
 - Leads to fixation
• Selection favoring heterozygotes (overdominance) can maintain polymorphism (underdominance leads to fixation)