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We are interested in studying the time to some event, often death. I will use the word “death” 
throughout, but keep in mind that it is a short hand for many other binary, non-reversible events 
of interest (e.g., time to metamorphosis, time to mating, the time until a seed is consumed).  

A very simple example: rolling dice 
Let us consider a simple example where we know the underlying process and can ignore a lot of 
messy (if interesting) biology. I simply took 100 dice and rolled each one until it turned up a 1, 
at which point it was “dead.” Note that I'm going to call each die an animal so I can avoid 
talking about dice dying! In any case, I just recorded how many rolls occurred until each animal 
died.  

Let’s load in and look at that data, which I’ve called “full” because we fully observed all of the 
dice/animals: 
setwd(file.choose()) 
full <- read.csv("RollDice_complete.csv") 

We can get a look at the distribution of rolls until death using the table command. 
table(full) 

    Death 
Roll  1 
  1  20 
  2  11 
  3  10 
  4  10 
  5   9 
  6   7 
  7   5 
  8  10 
  9   4 
  10  3 
  11  3 
  12  1 
  13  1 
  16  1 
  17  1 
  19  3 
  23  1 

You can see that even though each animal had a 1 in 6 chance for dying during any given roll, 
and so it should take on average 6 rolls (=1/rate = 1/(1/6) to kill each animal, there were some 
individuals who survived for a long time. The average number of rolls to death is not far from 
the expected value of 6, though: 
mean(full$Roll) 

Note:	  I’ve	  used	  different	  fonts	  and	  colors	  
for	  R code	  and	  the	  output.	  	  I	  have	  
excluded	  the	  “>”	  prompt	  you	  will	  see	  in	  
[R]	  to	  make	  it	  easier	  to	  copy-‐paste.	  
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[1] 5.51 

Because there may be a few individuals that take a really long time to die, the median, which is 
less affected by outliers, is often a better description of the average 
median(full$Roll) 

[1] 4 

We can jump through the hoops 
of survival analysis to find the 
mean or median time to death for 
this data set, but we get exactly the same answer. For completeness, I've included the steps to do 
this, but again, it's a bit silly. You can skip this section and start paying attention to the code 
in the next example. 
library(survival) 
s1 <- Surv(full$Roll, full$Death) 
survfit( s1 ~ 1) 

Call: survfit(formula = Surv(full$Roll, full$Death) ~ 1) 
 
records   n.max n.start  events  median 0.95LCL 0.95UCL  
    100     100     100     100       4       4       6  

plot( survfit( s1 ~ 1)  ) 

     
Other than creating this nifty graph of the cumulative loss of dice/animals (and the 95% 
confidence intervals around those estimates in dashed lines), what do we get out of this?  

A slightly more realistic example: censored rolling dice 
Let us now consider a slightly more realistic and complex example of how we might end up 
with survival data. We’ll keep the same underlying process (roll a one and you’re dead), but this 
time I stopped the experiment after only 10 rolls. We often have to end our experiments after 

Why isn't the median also close to 1/(1/6) = 6? With a constant 
rate of death, the distribution of times to death follows an 
exponential distribution, and while the mean of the exponential 
is 1/rate, the median is 1/rate*ln(2), which in our case is 4.159. 
We're pretty darn close to perfect! 
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some reasonable amount of time, even though some events (e.g., deaths) have yet to occur. 
(Who has time for all of that rolling, or watching a few straggler animals die?)  
The dice/animals that were still alive were given a value of Roll = 10 and Death = 0 (i.e., 
they did not die). Animals that are alive at the end of a study are “right censored”, or just 
censored for short. (Left censoring, where you don't know when an individual entered the 
experiment [e.g., was infected with the agent of interest] is possible, but is beyond this 
workshop.)  
In this case, we know that the animal was alive at day 10, but nothing else. It could have died 
the next roll, or the roll after that, or who knows when? And just to make things tricky, on the 
second and seventh rolls (days) I removed three dice/animals from the population. We often do 
this on purpose when we have to destructively sample a few individuals here or there to get 
some information from them at a certain point in time (e.g., hormones or infection status), but it 
can also happen accidentally, when, for instance, the bird you were studying hits a window—it's 
dead, but that's probably not the cause you were interested in! There are right censored, too. 
Let’s load in this new experimental data: 
cens <- read.csv("RollDice_censored.csv") 

And get a sense of when animals died (the “1” column, the “0” column were the censored 
animals): 
table(cens) 

    Death 
Roll  0  1 
  1   0 16 
  2   3 16 
  3   0 10 
  4   0 10 
  5   0  5 
  6   0  8 
  7   3  7 
  8   0  4 
  9   0  4 
  10 13  1 

Again, the column for Death = 0 are the censored animals, the Death = 1 column is for those 
that actually died.  
So here is where things get tricky. We want to know the average time to death, but we need to 
decide whether to include in our calculations those animals that were censored (either in the 
middle or at the end of the experiment). If we do, we are acting as if they died on the tenth roll, 
but they did not; they might have survived a long, long time!  
mean(cens$Roll) 

[1] 4.75 

median(cens$Roll) 

[1] 4 

If we exclude them, 
we ignore the fact that 

You may have noticed that this median is exactly what we had in the previous example, 
so maybe censoring is not such a big deal afterwards. Actually, it will depend a great 
deal on how many animals are censored and when, as well as the distribution of times 
to death. I wouldn't trust this happy accident to repeat itself in your data! 
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there were animals that did not die in the 10 days of the experiment. And we are essentially 
throwing away data! 
mean(subset(cens, Death == 1)$Roll) 

[1] 3.925926 

median(subset(cens, Death == 1)$Roll) 

[1] 3 

Either way, we bias our estimates, sometimes by quite a lot. Survival analyses can account for 
censored data, and thus use all of the data and avoid biased estimates. They can also yield some 
useful information on the rate at which your events occur, which can be terribly useful 
(One other reason not to use a normal regression or anova on times to death is that these 
methods assume a normal distribution. The distribution of times to death is rarely normal (in 
this example, fir instance, it is exponential) and sometimes not knowable, or even of interest. 
Survival analysis side-steps these issues.) 

Survival analysis: Kaplan-Meier estimates and curves 
So let's dig in, then. If you haven't already, you'll want to load the survival package 
library(survival) 

The first thing we need to do in [R] is to turn our data into a survival object, a different sort of 
data format that takes into account both when an event occurred and whether the individual was 
censored or not. Note the capital “S” on the Surv() function. It takes the time to event in the 
first position, and then the censoring/event code. By default, “1” means an event occurred and 
“0” means the individual was censored. You can specify a different coding system and other 
stats packages (e.g., JMP) reverse this coding. 
s2 <- Surv(cens$Roll, cens$Death)  

  [1]  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1  
 [16]  1   2   2   2   2   2   2   2   2   2   2   2   2   2   2  
 [31]  2   2   2+  2+  2+  3   3   3   3   3   3   3   3   3   3  
 [46]  4   4   4   4   4   4   4   4   4   4   5   5   5   5   5  
 [61]  6   6   6   6   6   6   6   6   7   7   7   7   7   7   7  
 [76]  7+  7+  7+  8   8   8   8   9   9   9   9  10  10+ 10+ 10+ 
 [91] 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 

This looks just like the list of times to death, only now the censored individuals have a plus after 
the time when they were censored to indicate that they survived for at least this many rolls. 
Next we need to estimate the survival function for these data using the Kaplan-Meier (K-M) 
estimator of the survival function. This is actually quite simple to calculate. For a given time, t = 
i, it is the number at risk just before time i (i.e., those that have survived and have not been 
censored by a given time—ni) minus those that die at time i (di), divided by the number at risk. 
In other words, it is the probability that an individual who has survived up to time t = i will 
survive beyond time t = i. The K-M estimators is:  

€ 

S( t ) =
ni − di
niti <t

∏  
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To calculate the probability of surviving to time, t, we simply multiply the (conditional) 
probabilities for all of the previous intervals and the interval of interest. 
While we can calculate this by hand, the [R] function survfit() will do it all for us. This 
function was really set up to compare survival among groups, so we have to use the formula 
interface. (that’s the what the tilde, “~” means). We'll get there, but for now, we're saying that 
there are no groups, just an intercept (~1). 
survfit(s2~1)  

Call: survfit(formula = s2 ~ 1) 
 
records   n.max n.start  events  median 0.95LCL 0.95UCL  
    100     100     100      81       4       3       6  

Notice that we recovered the “correct” median of ~4 rolls. We can get more information about 
the survival probability through time, S(t), and confidence intervals on those probabilities using 
the summary() function. 
summary(survfit(s2~1))     

Call: survfit(formula = s2 ~ 1) 
 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI 
    1    100      16    0.840  0.0367       0.7711        0.915 
    2     84      16    0.680  0.0466       0.5945        0.778 
    3     65      10    0.575  0.0498       0.4855        0.682 
    4     55      10    0.471  0.0506       0.3814        0.581 
    5     45       5    0.418  0.0501       0.3310        0.529 
    6     40       8    0.335  0.0480       0.2527        0.443 
    7     32       7    0.262  0.0448       0.1870        0.366 
    8     22       4    0.214  0.0425       0.1450        0.316 
    9     18       4    0.166  0.0391       0.1050        0.264 
   10     14       1    0.155  0.0381       0.0953        0.251 

And we can make a plot of this K-M survival curve. While the goal here is not making pretty 
pictures (this is very do-able in [R], but can take a bit of futzing), I’ve shown you a few 
iterations making more useful versions. 
plot(survfit(s2~1)) 
plot(survfit(s2~1), conf.int = F) 
plot(survfit(s2~1), conf.int = F, xlab = "Roll to death", ylab = "Proportion 

surviving") 
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 Adding to our simple example: coin flips 
We now want to work with multiple groups or types of individuals. To keep our example simple 
I have just added the survival of a different group (species?) to our data: coins! I flipped 100 
coins ten times, as above, but if they got a head then they were dead. Again, I also removed 
three coins from the population at times 2 and intended to at time 7, but there none left! So these 
data are very, very similar, only we expect each coin to have a 50:50 shot of dying after each 
coin flip, three-times greater than that for the dice rolls.  
Go ahead and read in the data and take a look at it, as before: 
dicecoin <- read.csv("DiceCoin.csv") 
table(dicecoin) 

Create a K-M estimates of survival (all in one-fell swoop this time): 
dc <- survfit(Surv(Time, Death) ~ Type, data = dicecoin) 
dc 

Call: survfit(formula = Surv(Time, Death) ~ Type, data = dicecoin) 
 
          records n.max n.start events median 0.95LCL 0.95UCL 
Type=Coin     100   100     100     97      2       1       2 
Type=Die      100   100     100     81      4       3       6 

Now, let’s plot the K-M curves. 
plot(dc) 

OK. There’s a bit of a problem here. We cannot 
differentiate the lines for the two types of 
animals. We’ll add color (col = c("blue", 
"red")) and different line types (lty = 1:2) to 
make this more transparent, along with axis 
labels. 
plot(dc, lty = 1:2, col = c("blue", 

"red"), xlab = "Time in flips or 
rolls", ylab = "Proportion alive") 

Let’s add a legend for clarity. Note: bty = "n" 
means do not put a box around the legend. 
legend(4, 0.9, c("Coins", "Dice"), lty 

= 1:2, col = c("blue", "red"), bty = 
"n") 

Survival analysis: The log-rank or Mantel-Haenszel test 
Now know that these two survival curves are different since we know the actual survival 
probabilities and can see that the curves are no where near each other. But it would be good to 
have a more formalized way to do this. Our first step is the log-rank test, which is essentially a 
contingency table approach. We just calculate the number of individuals at risk in each group at 
each time and the number of events that occur. If there is no difference between the groups then 
the number of events in, say, group A should be predicted by the overall proportion of events 
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(regardless of groups) times the number of individuals that are in group A. It is almost identical 
in logic to finding the expectations for a chi-square test. The contingency table is: 
  Group A Group B Total 

Event dAi dBi di 
No Event nAi - dAi nBi - dBi ni - di 

At Risk nAi nBi ni 
where i refers to the time ti and subscripts A and B are the two groups 
The expected number of deaths at time i in group A, if both groups are identical in terms of their 
survival functions, is simply, 

€ 

ˆ e Ai = (di × nAi) ni  .  We can then see how the expected number of 
deaths compares to the actual number of deaths in group A at time i, and do repeat this over 
each of the m times. (Since we only have two groups, we don't need to do this for both groups... 
deviation in one group means the deviation in the other.)  The actual test statistic is: 

€ 

Q =
dAi −i=1

m
∑ ˆ e Aii=1

m
∑( )

2

ˆ V (ˆ e Aii=1

m
∑ )

,  

where V is the variance of the expected number. This is chi-square distributed with 1 d.f.  
Again, we could do this by hand without much trouble, but [R] can do all of the math for us and 
probably make fewer mistakes: 
survdiff(Surv(Time, Death) ~ Type, data = dicecoin) 

Call: 
survdiff(formula = Surv(Time, Death) ~ Type, data = dicecoin) 
 
            N Observed Expected (O-E)^2/E (O-E)^2/V 
Type=Coin 100       97     57.7      26.7      65.3 
Type=Die  100       81    120.3      12.8      65.3 
 
 Chisq= 65.3  on 1 degrees of freedom, p= 6.66e-16  

The test shows that there is a significant different in these survival curves, which is reassuring. 
As you might guess, the log-rank test can only compare ≥2 distinct curves or groups; it cannot 
handle continuous variables or individual covariates. Moreover, it doesn’t provide a sense of the 
magnitude of the difference in survival. So it is a useful tool, but pretty limited. Let us move on. 

Survival analysis: The Cox proportional hazard model 
The Cox proportional hazard model is a much more general and useful way to test for 
differences in survival among groups, or even among individuals with continuous covariates. It 
works very much like a regression. In fact it is a regression model, with a key difference. A 
regression model has a baseline value based on the mean of one group or where the covariate(s) 
equal zero (i.e., the intercept) and then tests whether being in other groups or having non-zero 
values of the covariate changes the response variable. The Cox PH has a baseline hazard 
function, again based on one group. It then tests whether individuals in that other group have a 
higher or lower hazard than the baseline. So what is hazard? 
The hazard function or hazard rate, h(t), is the instantaneous rate at which we expect events (i.e., 
death) to occur. Note that this is not a conditional probability as was S(t)—it can be greater than 
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1 for instance—but rather it is interpreted as the expected number of events per individual per 
unit time. It is worth noting some relationships between the hazard function, survival function, 
and the probability density or distribution function (pdf)—the statistical distributions we’re used 
to seeing (e.g., the normal curve, the lognormal curve, the exponential curve). 

So this hazard function describes the rate at which we expect events (deaths) to occur through 
time. Often this hazard function is complex and hard to specify. The cool think about the Cox is 
that it just estimates a baseline hazard function, h0(t), from the data (in a nonparametric way) 
and then focuses on the differences between the baseline group and other groups (or individuals 
with other covariates). The hazard for an individual with predictors x1, x2, … is 

€ 

h0( t )e
β 1x1+β 2x2+ ... . 

Again, if h0(t) is the baseline hazard (e.g., being a coin), then we want to see whether being in a 
different group (e.g., a die) changes the hazard. The exponent part of this reduces to 1 if none of 
those predictors matter, otherwise they change the hazard by some multiple (e.g, twice or half of 
the baseline). What we are really testing is the proportional change in hazard with these 
different predictors.  
Embedded in this construction is the assumption that the proportional difference in hazard 
between groups is constant through time. This is a key assumption that bears testing and can 
sometimes limit the utility of this model, although there are some tricky ways to get around this.  
In any case, the code to conduct a Cox regression is very similar to any other regression in [R]. 
dc.cox <- coxph(Surv(Time, Death) ~ Type, data = dicecoin)  
summary(dc.cox) 

n= 200, number of events= 178  
           coef exp(coef) se(coef)      z Pr(>|z|)     
TypeDie -1.3479    0.2598   0.1725 -7.814 5.55e-15 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
        exp(coef) exp(-coef) lower .95 upper .95 
TypeDie    0.2598      3.849    0.1853    0.3643 
 
Concordance= 0.677  (se = 0.03 ) 
Rsquare= 0.27   (max possible= 1 ) 
Likelihood ratio test= 63.07  on 1 df,   p=1.998e-15 
Wald test            = 61.06  on 1 df,   p=5.551e-15 
Score (logrank) test = 67.91  on 1 df,   p=2.22e-16 

Hazard function, h(t)—instantaneous rate of events at time t. 
Survival function, S(t)—probability of surviving beyond time t. 
Probability density or distribution function (PDF), f(t)—essentially the expected 
distribution of times to death 
These are all related to each other in fairly simple, often very useful ways… 

€ 

h(t) =
f (t)
S(t)

= −
∂ lnS(t)
∂t

f (t) = S(t)h(t)

S(t) = exp − h(t)
0

t
∫[ ] = exp −H(t)[ ]
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Once again, we find a significant difference in the hazard of death between these groups. The 
value of exp(coef) = 0.2598 is the hazard ratio for the dice. It says that dice have about one-
quarter the hazard of coins. Since the confidence interval on this hazard ratio does not overlap 
with 1 (which would mean that there is no difference in hazard), we can be confident that this 
estimated difference is not due to random chance. 
It is sometimes useful to extract the baseline hazard (here, the hazard through time of coins). 
basehaz( dc.cox ) 

      hazard time 
1  0.3401289    1 
2  0.7302868    2 
3  1.0999080    3 
4  1.4558872    4 
5  1.6903325    5 
6  2.1360030    6 
7  2.6457717    7 
8  3.0297384    8 
9  3.5075668    9 
10 3.6477072   10 

This is somewhat revealing: since we are flipping coins the hazard should remain constant (and 
~50%) through time, but the Cox model is estimating an increasing hazard. To “properly” 
estimate the constant hazard, we will need to move on to different methods. Still, the overall 
conclusions about differences between coins and dice are robust. 

Survival analysis: Parametric accelerated failure time models 
Sometimes we actually know the hazard or PDF of the process (e.g., you have good data on the 
distribution of time-to-death or have a strong reason to think that it, like our coins and dice 
example, takes on a particular form). Or perhaps we can fit different parametric distributions 
and see which is best. This brings us to parametric survival models, specifically what are called 
accelerated failure time models. The key here is that we assume a particular statistical 
distribution and then we make the scale of this distribution (how stretched it is, left-to-right) a 
function of the parameters of interest. By stretching or scrunching, we are essentially slowing or 
accelerating time, hence the name.  
The advantages of accelerated failure models include being able to extrapolate the hazard 
beyond the time observed. Also, since we are modeling actual hazards, not certain ratios 
between groups, we can more easier account for (and interpret) the ways in which hazards are 
affected by parameters.  
Common distributions used in survival analysis include the exponential (with constant hazard), 
the lognormal, and the Weibull, a very flexible distribution and a good starting point if you 
don’t have good reason to use other distributions. In our case, we will use the exponential, since 
we know that we (should) have a constant hazard. 
dc.aft <- survreg(Surv(Time, Death) ~ Type, data = dicecoin,  

dist = "exponential") 
summary(dc.aft) 

Call: 
survreg(formula = Surv(Time, Death) ~ Type, data = dicecoin,  
    dist = "exponential") 



Survival Analysis Workshop Jesse Brunner Page 10 

            Value Std. Error    z        p 
(Intercept) 0.672      0.102 6.62 3.56e-11 
TypeDie     1.097      0.151 7.29 3.21e-13 
 
Scale fixed at 1  
 
Exponential distribution 
Loglik(model)= -386.5   Loglik(intercept only)= -412.6 
 Chisq= 52.22 on 1 degrees of freedom, p= 5e-13  
Number of Newton-Raphson Iterations: 4  
n= 200  

We can use the parameters to back-calculate the actual hazards for each group. Since our 
hazards are constant for the exponential model, this is pretty simple. We just exponentiate the 
negative of the parameter estimate(s). (If your model is complex, the predict() functions 
available for most of these regression-like models will be useful.) 
For the coin, the hazard is: 
exp(-(0.672+0*1.097)) 

[1] 0.5106862 

For the dice it is: 
exp(-(0.672+1*1.097)) 

[1] 0.1705034 

Both of these estimates are pretty close to what we would expect based on first principles. That 
is always satisfying! 

Summary 
So I hope that this has been a useful, informative introduction to survival analyses. This is a big 
field, with all sorts of special cases for different types of data or designs. It is also an area of 
active research. The basics that I have presented above should be pretty stable. The next step for 
you, then, is to settle on a statistics package (I would recommend [R]), figure out which sorts of 
analyses might be best, and start playing with other worked examples as well as your own data. 
Once you understand how hazard, survival, and pdfs all relate to each other, the most useful 
analyses will be the ones you create yourself! Good luck! 

 


