
Survival Analysis Workshop Jesse Brunner Page 1

Survival analysis for Integrative Biologists (Workshop)
SICB, 4 January 2012

Jesse Brunner
Washington State University

We are interested in studying the time to some event, often death. I will use the word “death”
throughout, but keep in mind that it is a short hand for many other binary, non-reversible events
of interest (e.g., time to metamorphosis, time to mating, the time until a seed is consumed).

A very simple example: rolling dice
Let us consider a simple example where we know the underlying process and can ignore a lot of
messy (if interesting) biology. I simply took 100 dice and rolled each one until it turned up a 1,
at which point it was “dead.” Note that I'm going to call each die an animal so I can avoid
talking about dice dying! In any case, I just recorded how many rolls occurred until each animal
died.

Let’s load in and look at that data, which I’ve called “full” because we fully observed all of the
dice/animals:
setwd(file.choose())
full <- read.csv("RollDice_complete.csv")

We can get a look at the distribution of rolls until death using the table command.
table(full)

 Death
Roll 1
 1 20
 2 11
 3 10
 4 10
 5 9
 6 7
 7 5
 8 10
 9 4
 10 3
 11 3
 12 1
 13 1
 16 1
 17 1
 19 3
 23 1

You can see that even though each animal had a 1 in 6 chance for dying during any given roll,
and so it should take on average 6 rolls (=1/rate = 1/(1/6) to kill each animal, there were some
individuals who survived for a long time. The average number of rolls to death is not far from
the expected value of 6, though:
mean(full$Roll)

Note:	
 I’ve	
 used	
 different	
 fonts	
 and	
 colors	

for	
 R code	
 and	
 the	
 output.	
 	
 I	
 have	

excluded	
 the	
 “>”	
 prompt	
 you	
 will	
 see	
 in	

[R]	
 to	
 make	
 it	
 easier	
 to	
 copy-­‐paste.	

Survival Analysis Workshop Jesse Brunner Page 2

[1] 5.51

Because there may be a few individuals that take a really long time to die, the median, which is
less affected by outliers, is often a better description of the average
median(full$Roll)

[1] 4

We can jump through the hoops
of survival analysis to find the
mean or median time to death for
this data set, but we get exactly the same answer. For completeness, I've included the steps to do
this, but again, it's a bit silly. You can skip this section and start paying attention to the code
in the next example.
library(survival)
s1 <- Surv(full$Roll, full$Death)
survfit(s1 ~ 1)

Call: survfit(formula = Surv(full$Roll, full$Death) ~ 1)

records n.max n.start events median 0.95LCL 0.95UCL
 100 100 100 100 4 4 6

plot(survfit(s1 ~ 1))

Other than creating this nifty graph of the cumulative loss of dice/animals (and the 95%
confidence intervals around those estimates in dashed lines), what do we get out of this?

A slightly more realistic example: censored rolling dice
Let us now consider a slightly more realistic and complex example of how we might end up
with survival data. We’ll keep the same underlying process (roll a one and you’re dead), but this
time I stopped the experiment after only 10 rolls. We often have to end our experiments after

Why isn't the median also close to 1/(1/6) = 6? With a constant
rate of death, the distribution of times to death follows an
exponential distribution, and while the mean of the exponential
is 1/rate, the median is 1/rate*ln(2), which in our case is 4.159.
We're pretty darn close to perfect!

Survival Analysis Workshop Jesse Brunner Page 3

some reasonable amount of time, even though some events (e.g., deaths) have yet to occur.
(Who has time for all of that rolling, or watching a few straggler animals die?)
The dice/animals that were still alive were given a value of Roll = 10 and Death = 0 (i.e.,
they did not die). Animals that are alive at the end of a study are “right censored”, or just
censored for short. (Left censoring, where you don't know when an individual entered the
experiment [e.g., was infected with the agent of interest] is possible, but is beyond this
workshop.)
In this case, we know that the animal was alive at day 10, but nothing else. It could have died
the next roll, or the roll after that, or who knows when? And just to make things tricky, on the
second and seventh rolls (days) I removed three dice/animals from the population. We often do
this on purpose when we have to destructively sample a few individuals here or there to get
some information from them at a certain point in time (e.g., hormones or infection status), but it
can also happen accidentally, when, for instance, the bird you were studying hits a window—it's
dead, but that's probably not the cause you were interested in! There are right censored, too.
Let’s load in this new experimental data:
cens <- read.csv("RollDice_censored.csv")

And get a sense of when animals died (the “1” column, the “0” column were the censored
animals):
table(cens)

 Death
Roll 0 1
 1 0 16
 2 3 16
 3 0 10
 4 0 10
 5 0 5
 6 0 8
 7 3 7
 8 0 4
 9 0 4
 10 13 1

Again, the column for Death = 0 are the censored animals, the Death = 1 column is for those
that actually died.
So here is where things get tricky. We want to know the average time to death, but we need to
decide whether to include in our calculations those animals that were censored (either in the
middle or at the end of the experiment). If we do, we are acting as if they died on the tenth roll,
but they did not; they might have survived a long, long time!
mean(cens$Roll)

[1] 4.75

median(cens$Roll)

[1] 4

If we exclude them,
we ignore the fact that

You may have noticed that this median is exactly what we had in the previous example,
so maybe censoring is not such a big deal afterwards. Actually, it will depend a great
deal on how many animals are censored and when, as well as the distribution of times
to death. I wouldn't trust this happy accident to repeat itself in your data!

Survival Analysis Workshop Jesse Brunner Page 4

there were animals that did not die in the 10 days of the experiment. And we are essentially
throwing away data!
mean(subset(cens, Death == 1)$Roll)

[1] 3.925926

median(subset(cens, Death == 1)$Roll)

[1] 3

Either way, we bias our estimates, sometimes by quite a lot. Survival analyses can account for
censored data, and thus use all of the data and avoid biased estimates. They can also yield some
useful information on the rate at which your events occur, which can be terribly useful
(One other reason not to use a normal regression or anova on times to death is that these
methods assume a normal distribution. The distribution of times to death is rarely normal (in
this example, fir instance, it is exponential) and sometimes not knowable, or even of interest.
Survival analysis side-steps these issues.)

Survival analysis: Kaplan-Meier estimates and curves
So let's dig in, then. If you haven't already, you'll want to load the survival package
library(survival)

The first thing we need to do in [R] is to turn our data into a survival object, a different sort of
data format that takes into account both when an event occurred and whether the individual was
censored or not. Note the capital “S” on the Surv() function. It takes the time to event in the
first position, and then the censoring/event code. By default, “1” means an event occurred and
“0” means the individual was censored. You can specify a different coding system and other
stats packages (e.g., JMP) reverse this coding.
s2 <- Surv(cens$Roll, cens$Death)

 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [16] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 [31] 2 2 2+ 2+ 2+ 3 3 3 3 3 3 3 3 3 3
 [46] 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5
 [61] 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7
 [76] 7+ 7+ 7+ 8 8 8 8 9 9 9 9 10 10+ 10+ 10+
 [91] 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+ 10+

This looks just like the list of times to death, only now the censored individuals have a plus after
the time when they were censored to indicate that they survived for at least this many rolls.
Next we need to estimate the survival function for these data using the Kaplan-Meier (K-M)
estimator of the survival function. This is actually quite simple to calculate. For a given time, t =
i, it is the number at risk just before time i (i.e., those that have survived and have not been
censored by a given time—ni) minus those that die at time i (di), divided by the number at risk.
In other words, it is the probability that an individual who has survived up to time t = i will
survive beyond time t = i. The K-M estimators is:

€

S(t) =
ni − di
niti <t

∏

Survival Analysis Workshop Jesse Brunner Page 5

To calculate the probability of surviving to time, t, we simply multiply the (conditional)
probabilities for all of the previous intervals and the interval of interest.
While we can calculate this by hand, the [R] function survfit() will do it all for us. This
function was really set up to compare survival among groups, so we have to use the formula
interface. (that’s the what the tilde, “~” means). We'll get there, but for now, we're saying that
there are no groups, just an intercept (~1).
survfit(s2~1)

Call: survfit(formula = s2 ~ 1)

records n.max n.start events median 0.95LCL 0.95UCL
 100 100 100 81 4 3 6

Notice that we recovered the “correct” median of ~4 rolls. We can get more information about
the survival probability through time, S(t), and confidence intervals on those probabilities using
the summary() function.
summary(survfit(s2~1))

Call: survfit(formula = s2 ~ 1)

 time n.risk n.event survival std.err lower 95% CI upper 95% CI
 1 100 16 0.840 0.0367 0.7711 0.915
 2 84 16 0.680 0.0466 0.5945 0.778
 3 65 10 0.575 0.0498 0.4855 0.682
 4 55 10 0.471 0.0506 0.3814 0.581
 5 45 5 0.418 0.0501 0.3310 0.529
 6 40 8 0.335 0.0480 0.2527 0.443
 7 32 7 0.262 0.0448 0.1870 0.366
 8 22 4 0.214 0.0425 0.1450 0.316
 9 18 4 0.166 0.0391 0.1050 0.264
 10 14 1 0.155 0.0381 0.0953 0.251

And we can make a plot of this K-M survival curve. While the goal here is not making pretty
pictures (this is very do-able in [R], but can take a bit of futzing), I’ve shown you a few
iterations making more useful versions.
plot(survfit(s2~1))
plot(survfit(s2~1), conf.int = F)
plot(survfit(s2~1), conf.int = F, xlab = "Roll to death", ylab = "Proportion

surviving")

Survival Analysis Workshop Jesse Brunner Page 6

 Adding to our simple example: coin flips
We now want to work with multiple groups or types of individuals. To keep our example simple
I have just added the survival of a different group (species?) to our data: coins! I flipped 100
coins ten times, as above, but if they got a head then they were dead. Again, I also removed
three coins from the population at times 2 and intended to at time 7, but there none left! So these
data are very, very similar, only we expect each coin to have a 50:50 shot of dying after each
coin flip, three-times greater than that for the dice rolls.
Go ahead and read in the data and take a look at it, as before:
dicecoin <- read.csv("DiceCoin.csv")
table(dicecoin)

Create a K-M estimates of survival (all in one-fell swoop this time):
dc <- survfit(Surv(Time, Death) ~ Type, data = dicecoin)
dc

Call: survfit(formula = Surv(Time, Death) ~ Type, data = dicecoin)

 records n.max n.start events median 0.95LCL 0.95UCL
Type=Coin 100 100 100 97 2 1 2
Type=Die 100 100 100 81 4 3 6

Now, let’s plot the K-M curves.
plot(dc)

OK. There’s a bit of a problem here. We cannot
differentiate the lines for the two types of
animals. We’ll add color (col = c("blue",
"red")) and different line types (lty = 1:2) to
make this more transparent, along with axis
labels.
plot(dc, lty = 1:2, col = c("blue",

"red"), xlab = "Time in flips or
rolls", ylab = "Proportion alive")

Let’s add a legend for clarity. Note: bty = "n"
means do not put a box around the legend.
legend(4, 0.9, c("Coins", "Dice"), lty

= 1:2, col = c("blue", "red"), bty =
"n")

Survival analysis: The log-rank or Mantel-Haenszel test
Now know that these two survival curves are different since we know the actual survival
probabilities and can see that the curves are no where near each other. But it would be good to
have a more formalized way to do this. Our first step is the log-rank test, which is essentially a
contingency table approach. We just calculate the number of individuals at risk in each group at
each time and the number of events that occur. If there is no difference between the groups then
the number of events in, say, group A should be predicted by the overall proportion of events

Survival Analysis Workshop Jesse Brunner Page 7

(regardless of groups) times the number of individuals that are in group A. It is almost identical
in logic to finding the expectations for a chi-square test. The contingency table is:
 Group A Group B Total

Event dAi dBi di
No Event nAi - dAi nBi - dBi ni - di

At Risk nAi nBi ni
where i refers to the time ti and subscripts A and B are the two groups
The expected number of deaths at time i in group A, if both groups are identical in terms of their
survival functions, is simply,

€

ˆ e Ai = (di × nAi) ni . We can then see how the expected number of
deaths compares to the actual number of deaths in group A at time i, and do repeat this over
each of the m times. (Since we only have two groups, we don't need to do this for both groups...
deviation in one group means the deviation in the other.) The actual test statistic is:

€

Q =
dAi −i=1

m
∑ ˆ e Aii=1

m
∑()

2

ˆ V (ˆ e Aii=1

m
∑)

,

where V is the variance of the expected number. This is chi-square distributed with 1 d.f.
Again, we could do this by hand without much trouble, but [R] can do all of the math for us and
probably make fewer mistakes:
survdiff(Surv(Time, Death) ~ Type, data = dicecoin)

Call:
survdiff(formula = Surv(Time, Death) ~ Type, data = dicecoin)

 N Observed Expected (O-E)^2/E (O-E)^2/V
Type=Coin 100 97 57.7 26.7 65.3
Type=Die 100 81 120.3 12.8 65.3

 Chisq= 65.3 on 1 degrees of freedom, p= 6.66e-16

The test shows that there is a significant different in these survival curves, which is reassuring.
As you might guess, the log-rank test can only compare ≥2 distinct curves or groups; it cannot
handle continuous variables or individual covariates. Moreover, it doesn’t provide a sense of the
magnitude of the difference in survival. So it is a useful tool, but pretty limited. Let us move on.

Survival analysis: The Cox proportional hazard model
The Cox proportional hazard model is a much more general and useful way to test for
differences in survival among groups, or even among individuals with continuous covariates. It
works very much like a regression. In fact it is a regression model, with a key difference. A
regression model has a baseline value based on the mean of one group or where the covariate(s)
equal zero (i.e., the intercept) and then tests whether being in other groups or having non-zero
values of the covariate changes the response variable. The Cox PH has a baseline hazard
function, again based on one group. It then tests whether individuals in that other group have a
higher or lower hazard than the baseline. So what is hazard?
The hazard function or hazard rate, h(t), is the instantaneous rate at which we expect events (i.e.,
death) to occur. Note that this is not a conditional probability as was S(t)—it can be greater than

Survival Analysis Workshop Jesse Brunner Page 8

1 for instance—but rather it is interpreted as the expected number of events per individual per
unit time. It is worth noting some relationships between the hazard function, survival function,
and the probability density or distribution function (pdf)—the statistical distributions we’re used
to seeing (e.g., the normal curve, the lognormal curve, the exponential curve).

So this hazard function describes the rate at which we expect events (deaths) to occur through
time. Often this hazard function is complex and hard to specify. The cool think about the Cox is
that it just estimates a baseline hazard function, h0(t), from the data (in a nonparametric way)
and then focuses on the differences between the baseline group and other groups (or individuals
with other covariates). The hazard for an individual with predictors x1, x2, … is

€

h0(t)e
β 1x1+β 2x2+

Again, if h0(t) is the baseline hazard (e.g., being a coin), then we want to see whether being in a
different group (e.g., a die) changes the hazard. The exponent part of this reduces to 1 if none of
those predictors matter, otherwise they change the hazard by some multiple (e.g, twice or half of
the baseline). What we are really testing is the proportional change in hazard with these
different predictors.
Embedded in this construction is the assumption that the proportional difference in hazard
between groups is constant through time. This is a key assumption that bears testing and can
sometimes limit the utility of this model, although there are some tricky ways to get around this.
In any case, the code to conduct a Cox regression is very similar to any other regression in [R].
dc.cox <- coxph(Surv(Time, Death) ~ Type, data = dicecoin)
summary(dc.cox)

n= 200, number of events= 178
 coef exp(coef) se(coef) z Pr(>|z|)
TypeDie -1.3479 0.2598 0.1725 -7.814 5.55e-15 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

 exp(coef) exp(-coef) lower .95 upper .95
TypeDie 0.2598 3.849 0.1853 0.3643

Concordance= 0.677 (se = 0.03)
Rsquare= 0.27 (max possible= 1)
Likelihood ratio test= 63.07 on 1 df, p=1.998e-15
Wald test = 61.06 on 1 df, p=5.551e-15
Score (logrank) test = 67.91 on 1 df, p=2.22e-16

Hazard function, h(t)—instantaneous rate of events at time t.
Survival function, S(t)—probability of surviving beyond time t.
Probability density or distribution function (PDF), f(t)—essentially the expected
distribution of times to death
These are all related to each other in fairly simple, often very useful ways…

€

h(t) =
f (t)
S(t)

= −
∂ lnS(t)
∂t

f (t) = S(t)h(t)

S(t) = exp − h(t)
0

t
∫[] = exp −H(t)[]

Survival Analysis Workshop Jesse Brunner Page 9

Once again, we find a significant difference in the hazard of death between these groups. The
value of exp(coef) = 0.2598 is the hazard ratio for the dice. It says that dice have about one-
quarter the hazard of coins. Since the confidence interval on this hazard ratio does not overlap
with 1 (which would mean that there is no difference in hazard), we can be confident that this
estimated difference is not due to random chance.
It is sometimes useful to extract the baseline hazard (here, the hazard through time of coins).
basehaz(dc.cox)

 hazard time
1 0.3401289 1
2 0.7302868 2
3 1.0999080 3
4 1.4558872 4
5 1.6903325 5
6 2.1360030 6
7 2.6457717 7
8 3.0297384 8
9 3.5075668 9
10 3.6477072 10

This is somewhat revealing: since we are flipping coins the hazard should remain constant (and
~50%) through time, but the Cox model is estimating an increasing hazard. To “properly”
estimate the constant hazard, we will need to move on to different methods. Still, the overall
conclusions about differences between coins and dice are robust.

Survival analysis: Parametric accelerated failure time models
Sometimes we actually know the hazard or PDF of the process (e.g., you have good data on the
distribution of time-to-death or have a strong reason to think that it, like our coins and dice
example, takes on a particular form). Or perhaps we can fit different parametric distributions
and see which is best. This brings us to parametric survival models, specifically what are called
accelerated failure time models. The key here is that we assume a particular statistical
distribution and then we make the scale of this distribution (how stretched it is, left-to-right) a
function of the parameters of interest. By stretching or scrunching, we are essentially slowing or
accelerating time, hence the name.
The advantages of accelerated failure models include being able to extrapolate the hazard
beyond the time observed. Also, since we are modeling actual hazards, not certain ratios
between groups, we can more easier account for (and interpret) the ways in which hazards are
affected by parameters.
Common distributions used in survival analysis include the exponential (with constant hazard),
the lognormal, and the Weibull, a very flexible distribution and a good starting point if you
don’t have good reason to use other distributions. In our case, we will use the exponential, since
we know that we (should) have a constant hazard.
dc.aft <- survreg(Surv(Time, Death) ~ Type, data = dicecoin,

dist = "exponential")
summary(dc.aft)

Call:
survreg(formula = Surv(Time, Death) ~ Type, data = dicecoin,
 dist = "exponential")

Survival Analysis Workshop Jesse Brunner Page 10

 Value Std. Error z p
(Intercept) 0.672 0.102 6.62 3.56e-11
TypeDie 1.097 0.151 7.29 3.21e-13

Scale fixed at 1

Exponential distribution
Loglik(model)= -386.5 Loglik(intercept only)= -412.6
 Chisq= 52.22 on 1 degrees of freedom, p= 5e-13
Number of Newton-Raphson Iterations: 4
n= 200

We can use the parameters to back-calculate the actual hazards for each group. Since our
hazards are constant for the exponential model, this is pretty simple. We just exponentiate the
negative of the parameter estimate(s). (If your model is complex, the predict() functions
available for most of these regression-like models will be useful.)
For the coin, the hazard is:
exp(-(0.672+0*1.097))

[1] 0.5106862

For the dice it is:
exp(-(0.672+1*1.097))

[1] 0.1705034

Both of these estimates are pretty close to what we would expect based on first principles. That
is always satisfying!

Summary
So I hope that this has been a useful, informative introduction to survival analyses. This is a big
field, with all sorts of special cases for different types of data or designs. It is also an area of
active research. The basics that I have presented above should be pretty stable. The next step for
you, then, is to settle on a statistics package (I would recommend [R]), figure out which sorts of
analyses might be best, and start playing with other worked examples as well as your own data.
Once you understand how hazard, survival, and pdfs all relate to each other, the most useful
analyses will be the ones you create yourself! Good luck!

