DNA Microarray Experiments and Analysis

John Wyrick
MBios 503
12/6/2004
Mechanics of DNA Microarrays

complex mixture of mRNA molecules

Gene 1

Gene 2

...Gene 6200

ATGCCGAATCGTCCAGTAACC
UACGGCUUAGCAGGUCAUUGG

Fluorescent Dye
Constructing DNA Microarrays

§ A DNA microarray is a collection of DNA probes separated in a regular array atop a solid support (glass slide, silicon chip, etc)

§ Affymetrix oligonucleotide microarrays
 • Short oligonucleotide probes (25mers) are synthesized directly on a silicon wafer using photolithography methods
 • Multiple oligonucleotide probes per gene including mismatch probe controls

§ cDNA microarrays
 • Full length cDNAs are PCR amplified and then printed using a robot onto coated glass slides
 • Glass slides can be coated with poly-lysine, GAPS, etc to facilitate attachment of DNA to the glass slide

§ Oligonucleotide microarrays
 • Long (70 - 100mers) oligonucleotide probes are printed on coated glass slides
For Yeast:

• Array of 6361 spots, each representing a single yeast gene

• Printed on GAPS-coated glass microscope slide

• Each spot contains 500 pg of PCR product

• Size of PCR products range from 60 bp to 1500 bp; average size: 480 bp
Affymetrix Oligonucleotide Microarrays

- 6181 ORFs + alignment controls
- each ORF: 20 perfect match 25mers (PM)
 20 single base mismatch (MM)
- mRNA signal = average of differences
 (PM - MM)
- Sensitivity = 0.1 mRNA molecules/cell
- Dynamic range = 0.1 - 100 mRNAs/cell
- Reproducibility = wt vs wt experiment, 99%
 of genes within 1.7 fold
The Mechanics of a DNA Microarray Experiment

§ Isolate mRNA from cell cultures

§ Reverse Transcribe mRNA into cDNA

§ Label cDNA or cRNA by incorporating fluorescently-labeled nucleotides

§ Hybridize labeled cDNA to DNA microarray

§ Wash and scan microarray in confocal laser scanner

§ Analyze data
DNA Microarray Experimental Procedure

Experimental yeast culture → Break open cells and purify mRNA → Reverse transcribe w/poly-dT primer → Cy5 → Hybridize to cDNA array

Control yeast culture → → Reverse transcribe w/poly-dT primer → → Cy3 → → Hybridize to cDNA array

Hybridize to cDNA array
- Red: Experimental mRNA
- Green: Control mRNA
- Yellow: Merged
Extracting Data from Scanned Microarray Image

Scanned Image

Gene with altered mRNA levels

§ Grid

- The total amount of fluorescence intensity of Cy5 and Cy3 dyes inside each grid circle is calculated
- Grid can be aligned manually or automatically

- Experimental mRNA (Cy5)
- Control mRNA (Cy3)
- Merge
Initial Microarray Data Analysis

§ Data Normalization
 • Total signal normalization
 • Exogenous (spiked) control mRNAs

§ Filters for identifying genes with altered mRNA levels
 • Absolute intensity change thresholds
 • Fold-change cutoffs
 • T-tests and other significance tests
 • Permutation tests
 • Error model methods

§ Use a Database to normalize, filter, and analyze microarray data
 • Integrate microarray data with data from other sources (gene function, proteomics data, etc)
Microarray Database

Raw data
- Microarray data

Database
- mySQL

Literature
- Gene annotations

Analysis Tools
- Error model analysis
- Cluster analysis
- Chromosome display

Results

Perl

Web interface
Methods for Data Mining and Visualization

§ Data visualization tools
 • Displays microarray data using prior knowledge of gene location/function

§ Clustering
 • Simplifies analysis by grouping together genes with similar expression patterns, but does not infer relationships between genes

§ Boolean Comparisons
 • Compares different microarray data sets to identify significant overlaps in expression patterns

§ Hidden Markov models
 • Useful for clustering time course data

§ Bayesian networks
 • Useful for identifying and testing relationships between genes
Raw Microarray Data

<table>
<thead>
<tr>
<th>GCN5 deletion</th>
<th>Gene (parse)</th>
<th>WT1val</th>
<th>WT1call</th>
<th>MT1val</th>
<th>MT1call</th>
<th>WT2val</th>
<th>WT2call</th>
<th>MT2val</th>
<th>MT2call</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORF YAL069W</td>
<td>YAL069W</td>
<td>2.0</td>
<td>A</td>
<td>6.9</td>
<td>A</td>
<td>0.7</td>
<td>A</td>
<td>0.0</td>
<td>A</td>
</tr>
<tr>
<td>SEO1 (YAL067C)</td>
<td>YAL067C</td>
<td>13.0</td>
<td>A</td>
<td>6.9</td>
<td>A</td>
<td>11.3</td>
<td>A</td>
<td>0.9</td>
<td>A</td>
</tr>
<tr>
<td>ORF YAL066W</td>
<td>YAL066W</td>
<td>10.0</td>
<td>A</td>
<td>2.5</td>
<td>A</td>
<td>20.0</td>
<td>P</td>
<td>16.4</td>
<td>A</td>
</tr>
<tr>
<td>ORF YAL065C</td>
<td>YAL065C</td>
<td>10.0</td>
<td>A</td>
<td>6.3</td>
<td>A</td>
<td>7.3</td>
<td>A</td>
<td>2.7</td>
<td>A</td>
</tr>
<tr>
<td>ORF YAL065C-A</td>
<td>YAL065CA</td>
<td>21.0</td>
<td>A</td>
<td>3.1</td>
<td>A</td>
<td>14.0</td>
<td>A</td>
<td>23.7</td>
<td>A</td>
</tr>
<tr>
<td>ORF YAL063C</td>
<td>YAL063C</td>
<td>9.0</td>
<td>A</td>
<td>0.6</td>
<td>A</td>
<td>20.0</td>
<td>A</td>
<td>2.7</td>
<td>A</td>
</tr>
<tr>
<td>GDH3 (YAL062W)</td>
<td>YAL062W</td>
<td>17.0</td>
<td>M</td>
<td>11.3</td>
<td>A</td>
<td>18.0</td>
<td>M</td>
<td>3.6</td>
<td>A</td>
</tr>
<tr>
<td>ORF YAL061W</td>
<td>YAL061W</td>
<td>21.0</td>
<td>P</td>
<td>12.0</td>
<td>A</td>
<td>16.0</td>
<td>A</td>
<td>9.1</td>
<td>A</td>
</tr>
<tr>
<td>ORF YAL060W</td>
<td>YAL060W</td>
<td>96.0</td>
<td>P</td>
<td>53.5</td>
<td>A</td>
<td>58.1</td>
<td>P</td>
<td>57.4</td>
<td>P</td>
</tr>
<tr>
<td>SIM1 (YAL059W)</td>
<td>YAL059W</td>
<td>182.0</td>
<td>P</td>
<td>105.7</td>
<td>P</td>
<td>154.2</td>
<td>P</td>
<td>96.6</td>
<td>P</td>
</tr>
<tr>
<td>CNE1 (YAL058W)</td>
<td>YAL058W</td>
<td>56.0</td>
<td>P</td>
<td>33.3</td>
<td>P</td>
<td>40.7</td>
<td>P</td>
<td>29.2</td>
<td>M</td>
</tr>
<tr>
<td>ORF YAL058C-A</td>
<td>YAL058CA</td>
<td>12.0</td>
<td>A</td>
<td>23.3</td>
<td>A</td>
<td>0.7</td>
<td>A</td>
<td>25.5</td>
<td>A</td>
</tr>
<tr>
<td>ORF YAL056W</td>
<td>YAL056W</td>
<td>52.0</td>
<td>P</td>
<td>56.6</td>
<td>P</td>
<td>66.8</td>
<td>P</td>
<td>67.5</td>
<td>P</td>
</tr>
<tr>
<td>ORF YAL055W</td>
<td>YAL055W</td>
<td>43.0</td>
<td>P</td>
<td>29.6</td>
<td>A</td>
<td>13.4</td>
<td>A</td>
<td>65.6</td>
<td>P</td>
</tr>
<tr>
<td>ACS1 (YAL054C)</td>
<td>YAL054C</td>
<td>15.0</td>
<td>A</td>
<td>0.6</td>
<td>A</td>
<td>6.0</td>
<td>M</td>
<td>0.0</td>
<td>A</td>
</tr>
<tr>
<td>ORF YAL053W</td>
<td>YAL053W</td>
<td>51.0</td>
<td>P</td>
<td>52.2</td>
<td>P</td>
<td>61.4</td>
<td>P</td>
<td>95.7</td>
<td>P</td>
</tr>
<tr>
<td>ORF YAL051W</td>
<td>YAL051W</td>
<td>8.0</td>
<td>A</td>
<td>16.4</td>
<td>A</td>
<td>22.7</td>
<td>P</td>
<td>8.2</td>
<td>A</td>
</tr>
<tr>
<td>ORF YAL049C</td>
<td>YAL049C</td>
<td>117.0</td>
<td>P</td>
<td>112.6</td>
<td>P</td>
<td>98.8</td>
<td>P</td>
<td>101.2</td>
<td>P</td>
</tr>
<tr>
<td>ORF YAL048C</td>
<td>YAL048C</td>
<td>5.0</td>
<td>A</td>
<td>17.6</td>
<td>A</td>
<td>7.3</td>
<td>A</td>
<td>0.9</td>
<td>A</td>
</tr>
<tr>
<td>ORF YAL047C</td>
<td>YAL047C</td>
<td>0.0</td>
<td>A</td>
<td>12.6</td>
<td>A</td>
<td>12.0</td>
<td>A</td>
<td>5.5</td>
<td>A</td>
</tr>
<tr>
<td>ORF YAL046C</td>
<td>YAL046C</td>
<td>44.0</td>
<td>P</td>
<td>18.9</td>
<td>A</td>
<td>40.7</td>
<td>P</td>
<td>29.2</td>
<td>A</td>
</tr>
<tr>
<td>ORF YAL045C</td>
<td>YAL045C</td>
<td>2.0</td>
<td>A</td>
<td>12.6</td>
<td>A</td>
<td>7.3</td>
<td>A</td>
<td>5.5</td>
<td>A</td>
</tr>
<tr>
<td>GCV3 (YAL044C)</td>
<td>YAL044C</td>
<td>339.0</td>
<td>P</td>
<td>315.8</td>
<td>P</td>
<td>236.3</td>
<td>P</td>
<td>255.2</td>
<td>P</td>
</tr>
<tr>
<td>PTA1 (YAL043C)</td>
<td>YAL043C</td>
<td>23.0</td>
<td>P</td>
<td>43.4</td>
<td>P</td>
<td>41.4</td>
<td>P</td>
<td>50.1</td>
<td>P</td>
</tr>
<tr>
<td>ORF YAL042W</td>
<td>YAL042W</td>
<td>167.0</td>
<td>P</td>
<td>118.3</td>
<td>P</td>
<td>140.2</td>
<td>P</td>
<td>97.5</td>
<td>P</td>
</tr>
<tr>
<td>ORF YAL043C-A</td>
<td>YAL043CA</td>
<td>10.0</td>
<td>A</td>
<td>12.0</td>
<td>A</td>
<td>5.3</td>
<td>A</td>
<td>20.1</td>
<td>A</td>
</tr>
<tr>
<td>CDC24 (YAL041W)</td>
<td>YAL041W</td>
<td>1.0</td>
<td>A</td>
<td>110.1</td>
<td>P</td>
<td>12.7</td>
<td>A</td>
<td>24.6</td>
<td>A</td>
</tr>
<tr>
<td>CLN3 (YAL040C)</td>
<td>YAL040C</td>
<td>37.0</td>
<td>P</td>
<td>70.5</td>
<td>P</td>
<td>50.7</td>
<td>P</td>
<td>34.6</td>
<td>P</td>
</tr>
<tr>
<td>CYC3 (YAL039C)</td>
<td>YAL039C</td>
<td>86.0</td>
<td>P</td>
<td>78.6</td>
<td>P</td>
<td>72.1</td>
<td>P</td>
<td>58.3</td>
<td>P</td>
</tr>
<tr>
<td>CDC19 (YAL038W)</td>
<td>YAL038W</td>
<td>2651.0</td>
<td>P</td>
<td>2257.6</td>
<td>P</td>
<td>3955.4</td>
<td>P</td>
<td>4586.3</td>
<td>P</td>
</tr>
</tbody>
</table>