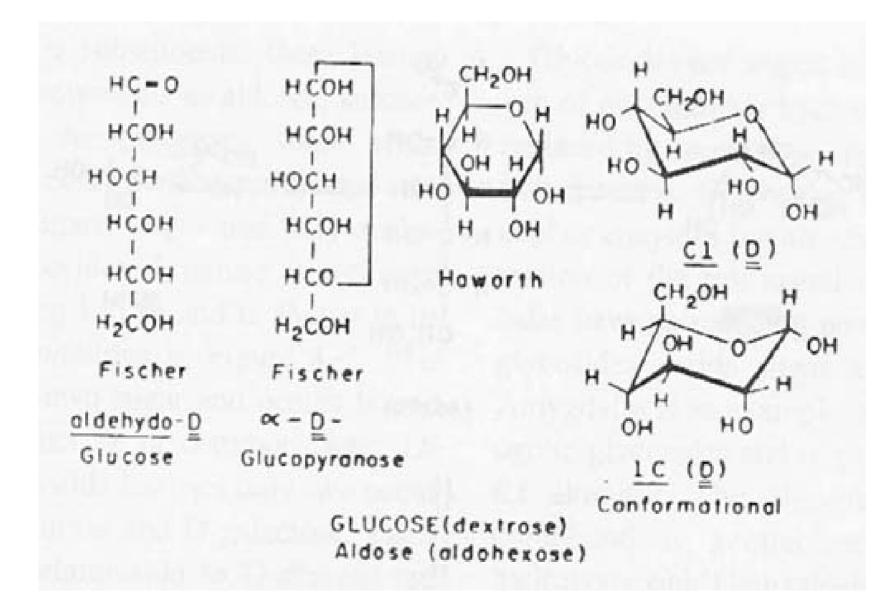
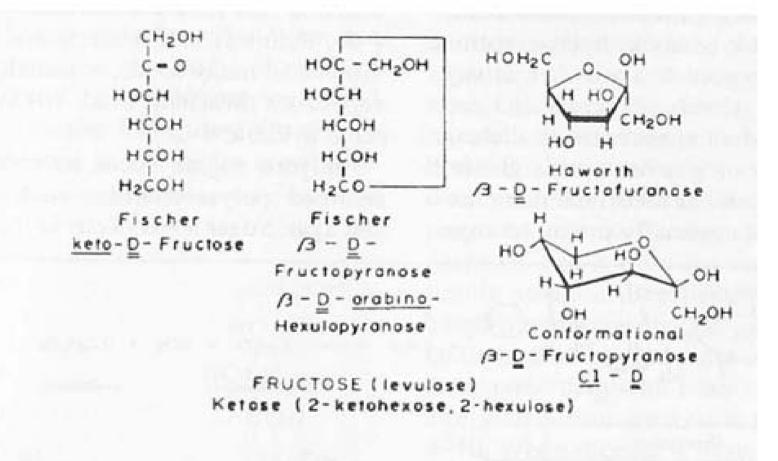
Carbohydrates

Role of sugars in foods


and the second second	Total Sug	ar	Polysaccharide
Product	(%)	Mono- and Disaccharides (%)	(%)
Fruits		and some strength of the strength of the	
Apple	14.5	glucose 1.17; fructose 6.04;	starch 1.5;
		sucrose 3.78; mannose trace	cellulose 1.0
Grape	17.3	glucose 5.35; fructose 5.33;	cellulose 0.6
		sucrose 1.32; mannose 2.19	
Strawberry	8.4	glucose 2.09; fructose 2.40;	cellulose 1.3
		sucrose 1.03; mannose 0.07	
Vegetables			
Carrot	9.7	glucose 0.85; fructose 0.85;	starch 7.8;
		sucrose 4.25	cellulose 1.0
Onion	8.7	glucose 2.07; fructose 1.09;	cellulose 0.71
		sucrose 0.89	
Peanuts	18.6	sucrose 4-12	cellulose 2.4
Potato	17.1		starch 14;
			cellulose 0.5
Sweet corn	22.1	sucrose 12-17	cellulose 0.7;
			cellulose 60
Sweet potato	26.3	glucose 0.87; sucrose 2-3	starch 14.65;
			cellulose 0.7
Turnip	6.6	glucose 1.5; fructose 1.18;	cellulose 0.9
		sucrose 0.42	
Others			
Honey	82.3	glucose 28-35; fructose 34-41;	
		sucrose 1-5	
Maple syrup	65.5	sucrose 58.2-65.5;	
		hexoses 0.0-7.9	
Meat		glucose 0.01	glycogen 0.10
Milk	4.9	lactose 4.9	
Sugarbeet	18-20	sucrose 18-20	
Sugar cane juice	14-28	glucose + fructose 4-8;	
		sucrose 10-20	


Role of sugars in foods

- Sweetness
- Browning
- Fermentation substrate
- Separating agent prevent lump formation in starch gels
- Reduce starch gelatinization
- Dehydrate pectin- permit gel formation in jelly
- Aerate batter and dough
- Weaken gluten structure (compete with glutenin and gliadin for water) increase tenderness
- Moisture retention in baked products

- Stabilize egg white foams
- Raise coagulation temperature of protein
- Add bulk and body to foods (yogurt)
- Slow crystallization in candies or syrups that are made with corn sweetner or hydroyzed sucrose (invert syrup)

- Monosaccharides glucose, fructose
 - Free carbonyl group reducing sugars and participate in browning reactions (Maillard rxn w/protein)
 - Carmelization reactions decomposition at high temperature
 - Contribute body and mouthfeel to foods (more viscous). Must modify viscosity for foods with non-nutritive sweetner
 - Fermentation
 - Preservative at high levels (Aw <0.85)

– Disaccharides – sucrose, maltose, cellobiose

Table 4-3 Common Oligosaccharides Occurring in Foods

Sucrose	(α-D-glucopyranosyl β-D-fructofuranoside)
Lactose	(4-O-β-D-galactopyranosyl-D-glucopyranose)
Maltose	(4-O-α-D-glucopyranosyl-D-glucopyranose)
α,α-Trehalose	(αD-glucopyranosyl-α-D-glycopyranoside)
Raffinose	$[O-\alpha-D-galactopyranosyl-(1\rightarrow 6)-O-\alpha-D-glucopyranosyl-(1\rightarrow 2)-\beta-D-fructofuranoside]$
Stachyose	$[O-\alpha-D-galactopyranosyl-(1\rightarrow 6)-O-\alpha-D-galactopyranosyl-(1\rightarrow 6)-O-\alpha-D-glucopyranosyl-(1\rightarrow 2)-\beta-D-fructofuranoside]$
Verbascose	$[O-\alpha-D-galactopyranosyl-(1\rightarrow 6)-O-\alpha-D-galactopyranosyl-(1\rightarrow 6)-O-\alpha-D-galactopyranosyl-(1\rightarrow 6)-O-\alpha-D-glucopyrano-syl-(1\rightarrow 2)-\beta-D-fructofuranoside]$

Source: From R.S. Shallenberger and G.G. Birch, Sugar Chemistry, 1975, AVI Publishing Co.

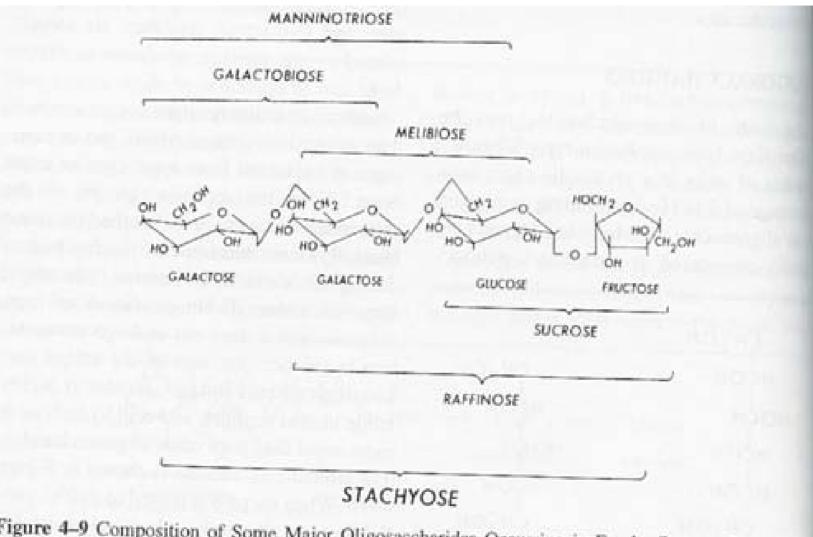


Figure 4–9 Composition of Some Major Oligosaccharides Occurring in Foods. Source: From R.S. Shallenberger and G.G. Birch, Sugar Chemistry, 1975, AVI Publishing Co.

Sugar Alcohols

- •Carbonyl group -> OH.
- •Sweet but less than sucrose. Not easily fermented (non cariogenic)
- •1-3Kcal/g
- •Low energy bulk ingredient in place of sugar
- •Sorbitol transformed as fructose (diabetic products)

 CH_2OH CH_2OH H-C-OH Н-С-ОН HO - C - HHO - C - HН-С-ОН Н-С-ОН H-C-OH CH₂OH CH_2OH xylitol sorbitol

Table 8.5 Some Polyhydric Alcohol Sweeteners

Sugar Component	Cal/g	Comments/Applications
Maltose	2.1	Chocolates
		Bulking agent in powdered products;
Sorbose	2.6	chewing gum (anti-cariogenic) Metabolized by fructose-1-phosphate
Xylose	2.4	pathway (needs no insulin)/baked goods, beverages Cooling mouthfeel/chewing gum (anti-cariogenic)
	Maltose Mannose Sorbose	Maltose 2.1 Mannose 1.5 Sorbose 2.6

Table 4-2 Occurrence of Sugar-Alcohols in Some Foods (Expressed as mg/100g of Dry Food)

Product	Arabitol	Xylitol	Mannitol	Sorbitol	Galactitol
Bananas	-	21			_
Pears	-	-	-	4600	-
Raspberries		268	-		-
Strawberries	-	362		-	-
Peaches	-	-	-	960	_
Celery	-	-	4050		
Cauliflower	-	300			-
White mushrooms	340	128	476	1	48

Source: From J. Washüttl, P. Reiderer, and E. Bancher, A Qualitative and Quantitative Study of Sugar-Alcohols in Several Foods: A Research Role, J. Food Sci., Vol. 38, pp. 1262–1263, 1973.

Artificial Sweetners

•Acesulfame K- no bitter aftertaste. 200x sucrose. Sunette®

•Aspartame –asp-pne-me. 180-200x sucrose.Not originally intended for heated products. Encapsulated form for bakery products.Equal®

•Saccharin- Me anthranilate. Naturally found in grapes.300-700x sucrose. Requires labeling. Sweet-n-Low®

Artificial Sweetners

•Sucralose. Trichloro-derivative of sucrose. 400-800x sucrose. Measures cup for cup like sucrose. Stable over wide pH, T range. Splenda® Cyclamate. Banned in 1970. 30x sucrose. Canada

- •Stevioside. Glycoside 300x
- •Thaumatin peptide. 2000-3000x. Talin®

Sweetener	Relative Sweetness	
Thaumatin ^b (Talin®)	2000-3000	
Monellin ^b	1500-2000	
Sucralose ^b (Splenda®)	5-2000	
Stevioside ^b	300	
Saccharin ^b	200-300	
Acesulfame K ^b (Sunette®)	130-200	
Aspartame ^b (Nutrasweet [®] , Equal [®])	100-200	
yclamates ^b	30-80	
ructose	1.3 ^c	
ylitol ^b	1.01	
ucrose	1.0 ^d	
agatose (Naturlose™)	0.92	
nvert sugar	0.85-1	
ylose	0.59	
Glucose	0.56	
Galactose	0.4-0.6	
Aaltose	0.3-0.5	
actose	0.2-0.3	

 Table 8.1
 Relative Sweetness of Selected Sugar Solutions (5%)

 and Other sweeteners^a

"Figures compiled from multiple sources including Godshall, M. A. 1997. "How carbohydrates influence food flavor". Food Technol. 51 (1): 63.

^bNonsugar sweetener.

^cHighly variable, depending on temperature. This is a representative value, but measurements may range from 0.8 to 1.7.

Value of sucrose arbitrarily set at 1.0 for reference purposes.

Polysaccharides

- Polysaccharides
- Starch
- Gums (plant, microbial)
- Cellulose (modified)
- Dietary fiber

Polysaccharides – Glucose polymers

- Dextrin-intermediate length linear glucose polymers(α-1,4). Starch hydrolysis.
- Maltodextrin fat replacers similar mouthfeel as fat
- Dextran-(α -1,6). Produced by fermentation.

Polysaccharides – Glucose polymers

- Starch-
 - amylose linear glucose polymer (α -1,4) and
 - amylopectin –branched glucose polymer (α-1,4 & α -1,6(branch point each 15-30 glucose).
 Very large 'tree shaped' molecule. Less soluble than amylose
 - Forms gels corn, wheat
 - Does not form gels waxy maize, tapioca

Polysaccharides

- Pectins plant cell wall material. Polymer of α-Dgalacturonic acid. Water soluble, gelling agents
- Gums stabilizers and thickeners
 - terrestrial (arabic, tragacanth, guar, locust bean)
 - marine plant (carrageenan, alginate, agar) Alginate form gels (calcium bridges).
 - Microbial (xanthan, gellan, dextran, curdlan)
 - Synthetic- microcrystalline cellulose, cellulose, methyl cellulose, carboxymethyl cellulose

Starch-Picking one

- Thickening or gel forming ability
- Mouthfeel (gummy, stringy)
- Freeze-thaw stability- (waxy or crosslinked starch)

Starch properties- Controlling gelatinization

- Acid- hydrolyzes starch. Less water absorption -Less firm cooled product. Add acid (lemon juice for filling – at end of cooking process)
- Agitation- aids in independent swelling of starch granules. More uniform paste. Less lumps. Excessive stirring will rupture granules and lead to thin, opaque pasty mixture

Starch properties- Controlling gelatinization

- Enzymes
 - α-amylase (intentionally added random hydrolysis), limit retrogradation (formation of crystalline form when cooled)
 - ✓ β-amylase (produces maltose (malting barley), germinating wheat
- Fats and protein- coat (fat), adsorbs (protein) to surface of starch granule. Delays hydration and increase in viscosity. Fat used as separating agent for flakey pie crusts

Starch properties- Controlling gelatinization

- Sugar
 - decrease firmness of cooked and cooled starch product.
 - Absorbs water that granule would have absorbed
 - Delays absorption preventing complete swelling of starch granule
 - Separating agent allows individual swelling of granules
 - Increases gelatinization temperature.
 - Reduces hydrolytic affect of acid on starch hydrolysis

Modified Starch

- Thin boiling- hydrolyzed, very thin as hot liquid easy to pump. Form strong gels when formed (fewer branches, easier to form H bonds)
- Oxidized-sodium hypochlorite softer gels than acid hydrolyzed
- Crosslinked-alter OH groups to reduce retrogradation (OH ethyl on C2). More stable to heat and agitation than native starch.
- "Resistant" starch not digestable (chemically modified or repolymerized). Dietary fiber source that has functional properties of starch

Pectins

- Pectin– galacturonic acid polymer. Dispersible in water. Variable degree of methyl esters
- Low methoxy pectin mostly free carboxyl groups. 20-40% methylated. Forms gels by crosslinking with Ca.
- High methoxy pectin 50-58% esterified. Form gels with addition of acid and sugar. pH <3.5 for gel formation. Align at junction zones and form crosslinks.

Gums and hydrocolloids

- Complex -branched –hydrophilicheteroglycans. 1000DP
- Galactose (little or no glucose)
- Viscous solutions rather than gels

Functions of gums in food

- Thickeners- salad dressing, sauces, soups, beverages
- Stabilizer-ice cream, icing, emulsions
- Control crystal size- candy
- Suspending agent-salad dressing
- Gelling agents-fruit pieces, cheese analogs
- Coating agents- batters (fried foods)
- Fat replacers- low-fat salad dressings, ice cream, desserts
- Bulking agent-low fat foods
- Source of dietary fiber-beverages, soups, baked goods

Seed Gums

- Guar gum-contains only mannose/galactose 2:1. Soluble in cold water. Won't gel alone. Forms gels with carrageenan and locust. Dressings, soups, sauces ice cream crystal inhibitor. Inhibits digestion and absorption of glucose.
- Locust bean mannose/galactose 4:1.soluble only in hot water. Stabilizer in meat and dairy products. Gels with xanthan.

Plant Exudate Gums

• Arabic – highly water soluble. Newtonian flow.

– Stabilize emulsions and control crystal size

• Tragacanth- very viscous sols. Impart creamy texture, suspend particles

Microbial Gums

- Xanthan- viscous sols stable over wide range of pH and T
- Thickener, stabilizer and suspending agent
- Forms gel with locust bean gum.
- Shear thins

Marine polysaccharides- Carrageenan

- Stabilize milk products (ice cream, process cheese, chocolate milk)
- (-)Galactose polymer with varying amount of (-) sulfate esters: Kappa (lowest sulfate), iota, lambda (highest sulfate) fractions. These generally used in combination
- Kappa -forms strong gels with K+
- Iota-forms strong gels with Ca++
- Lambda- too highly charged to gel
- Crosslinks with other gums

Marine polysaccharides- Agar

- Red algae. Galactose (a,b) polymer
- 2 fractions- agarose and agaropectin (sulfate esters)
- Strong, transparent, heat-reversible gels
- Meat products and gels

Marine polysaccharides- Alginates

- Brown algae
- Mannuronic and guluronic acids
- Gel with Ca++
- Fruit purees, "sythetic fruit" and vegetable pieces, kosher caviar, candies

Synthetic Gums- Cellulose Derivatives

Glucose polymer, 3000+DP

- Microcrystalline Acid hydrolysis of cellulose. Bulking agent.
- Methyl (MC) and carboxymethyl (CMC) cellulose alkaline hydrolysis.
- CMC- binder, thickener (fillings, puddings). Retard ice crystal and sugar crystal growth
- MC- will gel when cooled
- Hydroxypropyl, hydroxypropylmethyl cellulose coatings for fried food (moisture migration)

Dietary Fiber

- Structural polysaccharides
 - Cellulose- B-D-glucose polymer
 - Hemicellulose- heteropolysaccharides of xylose, mannose, galactose
 - Pectins
- Structural non-polysaccharides Lignin
- Nonstructural polysaccharides
 - Pentosans- polymers of arabinose and xylose (other sugars)
 - Gums