Flavors

- Flavor = sensation produced by a material taken in the mouth.
- Taste (sour, salty, bitter, sweet), smell, general pain, tactile (texture) and temperature receptors
- Sum of the characteristics of the material which produce that sensation

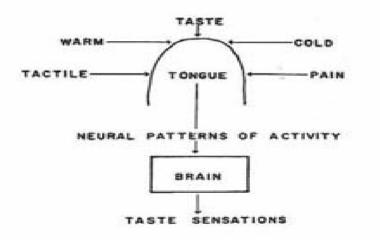


Figure 7–1 Schematic Representation of the Taste Process. *Source*: From L.M. Beidler, Facts and Theory on the Mechanism of Taste and Odor Perception, in *Chemistry of Natural Food Flavors*, 1957, Quartermaster Food and Container Institute for the Armed Forces.

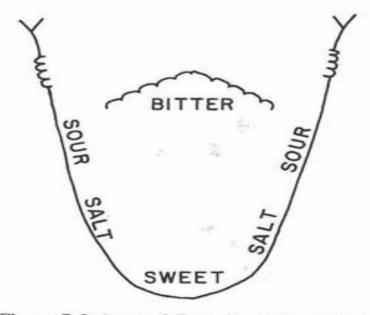
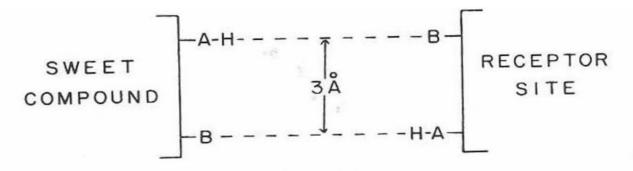
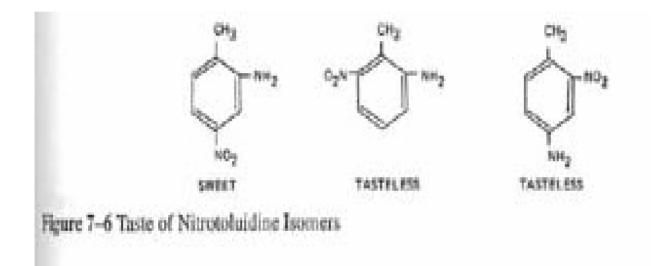



Figure 7-2 Areas of Taste Sensitivity of the Tongue

Taste receptors


- Nerve activity from taste cells
- Receptor membranes have voltage dependent calcium channels. Ca triggers norepinephrine release
- Mechanism of interaction between food and (protein?) receptors not well understood

Taste receptors

.

Figure 7-11 The AH,B Theory of Sweet Taste Perception

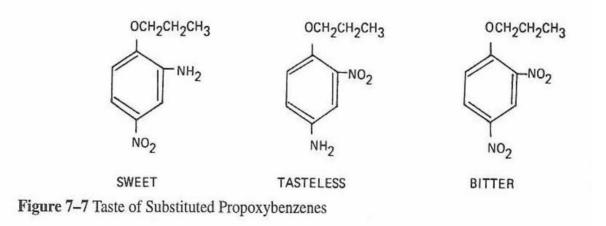


Table 7–1 Difference in Taste Between the Land D-Forms of Amino Acids

Amino Acid	Taste of L Isomer	Taste of D Isomer
Asparagine	Insipid	Sweet
Glutamic acid	Unique	Almost taste- less
Phenylala- nine	Faintly bitter	Sweet, bitter aftertaste
Leucine	Flat, faintly	Strikingly sweet
Valine	Slightly sweet, bitter	Strikingly sweet
Serine	Faintly sweet, stale after- taste	Strikingly sweet
Histidine	Tasteless to bitter	Sweet
soleucine	Bitter	Sweet
Methionine	Flat	Sweet
Tryptophane	Bitter	Very sweet

Taste	Composition of Peptides
Flat	L-Lys-L-Glu, L-PhE-L-Phe, Gly- Gly-Gly-Gly
Sour	L-Ala-L-Asp, γ-L-Glu-L-Glu, Gly- L-Asp-L-Ser-Gly
Bitter	L-Leu-L-Leu, L-Arg-L-Pro, L-Val- L-Val-L-Val
Sweet	L-Asp-L-Phe-OMe, L-Asp-L- Met-OMe
Biting	γ-L-Glutamyl-S-(prop-1-enyl)-L- cystein

Table 7–5 Taste of Some Selected Peptides

Source: From J. Solms, Nonvolatile Compounds and the Flavor of Foods, in *Gustation and Olfaction*, G. Ohloff and A.F. Thomas, eds., 1971, Academic Press.

Salt taste

Salt taste – main role is flavor enhancer, mouthfeel and balance

Dependent upon cation/anion

Increase MW -> bitter

Low sodium diets – KCl – bitter, metallic

Taste	Salts
Salty	LiCl, LiBr, Lil, NaNO ₃ , NaCl, NaBr, Nal, KNO ₃ , KCl
Salty and bitter	KBr, NH₄I
Bitter	CsCl, CsBr, Kl, MgSO4
Sweet	Lead acetate, ¹ beryllium acetate ¹
¹ Extremely toxic	en. 1910 - 1910 -

Sour Taste

- Property of H+
- No simple relationship between concentration and taste
- Dependent on nature of acid group, pH (degree of ionization), titratable acidity, buffering capacity (solution, saliva), sugar
- Organic acids (citric, tartaric) greater 'taste' than inorganic at same pH

Table 7–12 Flavor Character of Some N-Carboxylic Acids

Acid		Flavor Character	
	Formic	Acid, pungent	
	Acetic	Acid, vinegary, pungent	
	Propionic	Acid, pungent, rancid, cheesy	
	Butyric	Acid, rancid	
	Hexanoic	Sweaty, goaty	
	Octanoic	Rancid	
	Decanoic	Waxy	
	Lauric	Tallowy	
	Myristic	Soapy, cardboard	
	Palmitic	Soapy	

Bitter compounds

- Many inorganic and organic compounds
- Plant origin
- Component of foods that are sweet or sour
- Bitter peptides hydrolysis of protein (cheese ripening)
- Alkaloids and glycosides. Quinine.
- Naringin and hesperidin (fruit and citrus antioxidants)

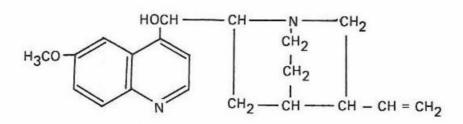


Figure 7–13 Structure of Quinine. This has an intensely bitter taste.

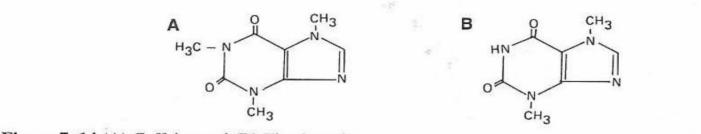


Figure 7–14 (A) Caffeine and (B) Theobromine

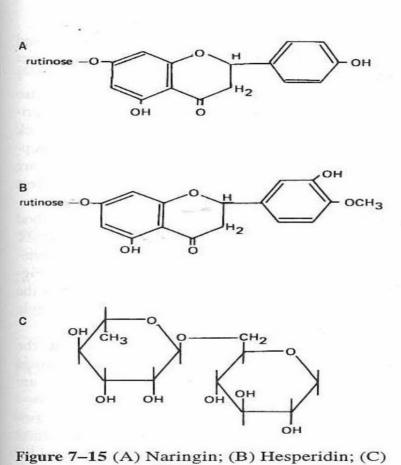


Figure 7–15 (A) Naringin; (B) Hesperidin; (C) Rutinose, $6-O-\alpha$ -L-Rhamnopyranosyl-D-Glucopyranose