Flavors

Other Aspects of Taste

- Sugar/acid ratio
- Astringency More touch than taste, dry puckering sensation
 - higher MW tannins (lower MW are bitter)
 - proline rich proteins (bind with polyphenols),
 glycoproteins. Oak aging, tea, cocoa.
 - anthocyanins

Other Aspects of Taste

- Coolness menthol
- Hotness-pungency (aromatic ring, carbonyl groups, alkyl side chains, nonvolatile amides)
 - Hot and black pepper, ginger

$$\begin{array}{c} CH_{3}(a) \\ OH(e) \\ i-C_{3}H_{7}(e) \\ \end{array}$$

$$\begin{array}{c} CH_{3}(a) \\ OH(e) \\ i-C_{3}H_{7}(e) \\ \end{array}$$

$$\begin{array}{c} CH_{3}(a) \\ OH(e) \\ i-C_{3}H_{7}(e) \\ \end{array}$$

$$\begin{array}{c} CH_{3} \\ 2 \\ HO \\ \hline \begin{array}{c} 3 \\ 4 \\ i-C_{3}H_{7} \\ \end{array}$$

$$(\pm) \text{-Menthol} \qquad (\pm) \text{-Isomenthol} \\ \end{array}$$

$$\begin{array}{c} CH_{3}(a) \\ \hline \begin{array}{c} CH_{3} \\ 4 \\ i-C_{3}H_{7} \\ \end{array}$$

$$\begin{array}{c} CH_{3}(a) \\ \hline \begin{array}{c} CH_{3} \\ \hline \begin{array}{c} A \\ i-C_{3}H_{7}(e) \\ \end{array}$$

$$\begin{array}{c} CH_{3}(a) \\ \hline \begin{array}{c} OH(a) \\ \hline \begin{array}{c} CH_{3}(a) \\ \hline \end{array} \begin{array}{c} OH(a) \\ \hline \end{array}$$

$$\begin{array}{c} CH_{3}(a) \\ \hline \begin{array}{c} OH(a) \\ \hline \end{array} \begin{array}{c} CH_{3}(a) \\ \hline \end{array} \begin{array}{c} OH(a) \\ \hline \end{array}$$

$$\begin{array}{c} CH_{3}(a) \\ \hline \begin{array}{c} OH(a) \\ \hline \end{array} \begin{array}{c} I-C_{3}H_{7}(e) \\ \hline \end{array}$$

$$\begin{array}{c} CH_{3}(a) \\ \hline \begin{array}{c} OH(a) \\ \hline \end{array} \begin{array}{c} I-C_{3}H_{7}(e) \\ \hline \end{array}$$

$$\begin{array}{c} CH_{3}(a) \\ \hline \begin{array}{c} OH(a) \\ \hline \end{array} \begin{array}{c} I-C_{3}H_{7}(e) \\ \hline \end{array}$$

$$\begin{array}{c} CH_{3}(a) \\ \hline \end{array} \begin{array}{c} OH(a) \\ \hline \end{array} \begin{array}{c} I-C_{3}H_{7}(e) \\ \hline \end{array}$$

$$\begin{array}{c} CH_{3}(a) \\ \hline \end{array} \begin{array}{c} OH(a) \\ \hline \end{array} \begin{array}{c} I-C_{3}H_{7}(e) \\ \hline \end{array}$$

$$\begin{array}{c} I-C_{3}H_{7}(e) \\ \hline \end{array}$$

$$\begin{array}{c} I-C_{3}H_{7}(e) \\ \hline \end{array}$$

$$\begin{array}{c} I-C_{3}H_{7}(e) \\ \hline \end{array} \begin{array}{c} I-C_{3}H_{7}(e) \\ \hline \end{array}$$

$$\begin{array}{c} I-C_{3}H_{7}(e) \\ \hline \end{array}$$

Figure 7-16 Isomeric Forms of Menthol

$$H_3CO$$
 CH_2
 CH_3
 CH_3

Figure 7-18 Capsaicin, the Pungent Principle of Red Pepper

$$\begin{array}{c|cccc}
O \longrightarrow CH_2 \\
O \longrightarrow CH_2 \\
O \longrightarrow CH_2 \\
H_2 \longrightarrow H_2 \\
H_2 \longrightarrow H_2
\end{array}$$

Figure 7-17 Piperine, Responsible for the Hotness of Pepper

Figure 7–19 Zingerone, the Pungent Principle of Ginger

Other Aspects of Taste

• Metallic taste (saccharin)— not clear set of receptors, perceived over entire tongue surface. Threshold increased by adding salt, sugar, citric acid, alcohol. Tannins lower threshold.

Flavor Enhancement - Umami

- Basic taste response to amino acids. Umami deliciousness
- Can't be reproduced by mixing chemicals of different primary tastes
- Difficult to describe meaty, savory
- Glutamic acid (MSG). Does not affect 4 primary taste.
- Umami compounds in protein hydrolysates, soy sauce, nucleotides (disodium 5-inosinate is 16x stronger than glutamate)

ONa
$$V = C^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O = P - O - s \cdot CH^{2}$$

$$O =$$

Figure 7–21 Structure of Nucleotides with Flavor Activity

Table 7-9 Threshold Levels of Flavor Enhancers Alone and in Mixtures in Aqueous Solution

Threshold Level (%)

Solvent	Disodium 5'-Inosinate	Disodium 5'-Guanylate	Monosodium L-Glutamate	
Water	0.012	0.0035	0.03	
0.1% glutamate	0.0001	0.00003	_	
0.01% inosinate	_	_	0.002	

Source: From A. Kuninaka, Recent Studies of 5'-Nucleotides as New Flavor Enhancers, in Flavor Chemistry, I. Hornstein, ed., 1966, American Chemical Society.

Table 7–8 Glutamic Acid Content of Some Proteins

Protein Source	Glutamic Acid (%)	
Wheat gluten		36.0
Corn gluten		24.5
Zein		36.0
Peanut flour		19.5
Cottonseed flour		17.6
Soybean flour		21.0
Casein		22.0
Rice		24.1
Egg albumin		16.0
Yeast		18.5

Source: From L.A. Hall, Protein Hydrolysates as a Source of Glutamate Flavors, in Monosodium Glutamate—A Symposium, 1948, Quartermaster Food and Container Institute for the Armed Forces.

Flavor Enhancers

- Maltol browning reactions -roasting malt, coffee, cocoa, grain. Produced during baking
- Casein-lactose heating (chocolates, candies, dairy foods)
- Antioxidant properties. Can extend shelf life of coffee and roasted cereals

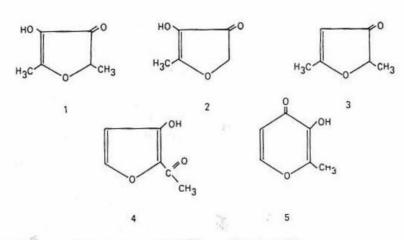


Figure 7–23 Some Furanones (1,2,3), Isomaltol (4), and Maltol (5)

R =
$$C_5H_{11}$$
 (coconut)

R = C_6H_{13} (peach)

R = C_7H_{15} (peach)

R = C_8H_{17} (peach-musk)

Figure 7–25 Flavor Character of Some Lactones. *Source*: From R. Teranishi, Odor and Molecular Structure, in *Gustation and Olfaction*, G. Ohloff and A.F. Thomas, eds., 1971, Academic Press.

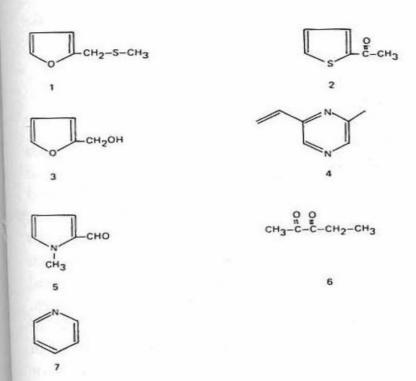


Figure 7–35 Structure of Some Important Constituents of the Aroma of Coffee. (1) Furfurylmethyl-sulfide, (2) 2-acetylthiophene, (3) 2-furfurylalcohol, (4) 2-methyl-6-vinyl-pyrazine, (5) n-methyl-pyrrole-2-aldehyde, (6) acetylpropionyl, (7) pyridine.

Aroma

- More complex and more sensitive (10,000x) than taste
- Dogs and rodents 100x more sensitive than humans
- Volatile components, solubility less critical than molecular structure
- Affected by physiological and health condition
- Can 'remember' aromas 1000s of compounds

Table 7–21 Number of Volatile Components in the Essential Oils of Some Spices

Spice	Number	
Cinnamon	113	
Cloves	95	
Ginger	146	
Nutmeg	80	
Pepper	122	
Vanilla	190	

Source: Reprinted with permission from H. Maarse, Volatile Compounds in Foods and Beverages, p. 420, 1991, by courtesy of Marcel Dekker, Inc.

Theory

- Molecules fit into an enzyme-like lock and key receptor (shape size pungent putrid)
- Membrane puncturing model molecules absorbed across lipid membrane interface.
 Desorbs, leaving a deformation in membrane that causes a neural response
- Seven primary odors

Table 7-14 Primary Odors for Humans and Compounds Eliciting These Odors

Primary Odor	Odor Compounds	
Camphoraceous	Borneol, tert-butyl alcohol d-camphor, cineol, pentamethyl ethyl alcohol	
Pungent	Allyl alcohol, cyanogen, formaldehyde, formic acid, methylisothiocyanate	
Ethereal	Acetylene, carbon tetrachloride, chloroform, ethylene dichloride, propyl alcohol	
Floral	Benzyl acetate, geraniol, α-ionone, phenylethyl alcohol, terpineol	
Pepperminty	tert-butylcarbinol, cyclohexanone, menthone, piperitol, 1,1,3-trimethyl- cyclo-5-hexanone	
Musky	Androstan-3α-ol (strong), cyclohexadecanone, ethylene cebacate, 17- methylandrostan-3α-ol, pentadecanolactone	
Putrid	Amylmercaptan, cadaverine, hydrogen sulfide, indole (when concentrated floral when dilute), skatole	

Source: From J.E. Amoore et al., The Stereochemical Theory of Odor, Sci. Am., Vol. 210, No. 2, pp. 42-49, 1964.

Aroma

- Contributory flavor compounds
- Pyrazines
- Esters
- Aldehydes
- 2-trans-enals (cucumber, beany off flavor)
- 2,4-dienals (cardboard, linoleum)
- Dimethylsulfide –canned eat

- Short chain fatty acids (pleasant to some, not others)
- Most individual flavor compounds are repugnant or painful outside their proper formulations
- Off-aromas-transfer of feed components to milk, meat. Heat, oxidation, light, enzyme action.

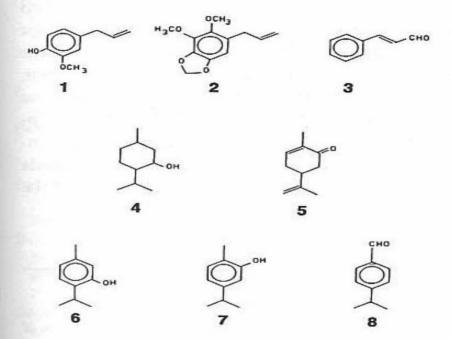


Figure 7–36 Volatile Constituents of Spices and Herbs: (1) Eugenol, (2) dillapiol, (3) cinnamaldehyde, (4) menthol, (5) carvone, (6) thymol, (7) carvacrol, (8) cuminaldehyde

Table 7–10 Odor Threshold Concentrations of Odorous Substances Perceived During Normal Inspiration

Compound	Threshold Concentration (Molecules/cc)	
Allyl mercaptan	6 × 10 ⁷	
Sec. butyl mercaptan	1×10^8	
Isopropyl mercaptan	1×10^8	
Isobutyl mercaptan	4×10^8	
Tert. butyl mercaptan	6×10^{8}	
Thiophenol	8×10^{8}	
Ethyl mercaptan	1×10^9	
1,3-Xylen-4-ol	2×10^{12}	
μ-Xylene	2×10^{12}	
Acetone	6×10^{13}	

Source: From K.B. Döving, Problems in the Physiology of Olfaction, in Symposium on Foods: The Chemistry and Physiology of Flavors, H.W. Schultz et al., eds., 1967, AVI Publishing.