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1. Definition 

 
Computational chemistry is an area of theoretical chemistry whose focus is the use 

and development of efficient mathematical approximations and computer programs to 
obtain results relative to chemical problems.  Examples of properties that can be 
calculated include total energies, molecular geometries, dipole and quadrupole moments, 
vibrational frequencies, reaction cross-sections, thermochemical data and diverse 
spectroscopic quantities.  Computational quantum chemistry uses mathematical equations 
and approximations derived from quantum mechanics. 
 
 

2. Introduction 
 

Exact analytical solutions to the Schrödinger equation only exist for the simplest of 
quantum mechanical systems like the particle in a box, rigid rotor, harmonic oscillator, 
and the hydrogen atom.  Calculations on more complex systems, like many-electron 
atoms and molecules, require approximations to be made. There exist numerous methods 
available to computational quantum chemists that employ differing levels of 
approximation and thus differ in accuracy and cost (time and computer resources 
required).  The method one chooses for a specific problem is largely determined by the 
accuracy desired, computer resources available, and length of time.  Generally, the cost 
of a calculation increases dramatically with increasing system size and level of accuracy 
(discussed more specifically below). Numerical solutions of extremely high accuracy are 
still possible, but may require considerable computational resources.  The methods 
discussed here are called ab initio (“from the beginning”) because they do not include 
empirical parameters or experimental data and are derived directly from the postulates of 
quantum mechanics. 

 
There are 3 main concepts that should be kept in mind when obtaining approximate 

solutions to the quantum mechanical Schrödinger equation: (a) the Born-Oppenheimer 
approximation, which leads to the idea of a potential energy surface, (b) the expansion of 
the many-electron wavefunction in terms of Slater determinants, i.e., the “method”, and 
(c) the representation of Slater determinants by molecular orbitals, which are constructed 
from atom-centered Gaussian-type functions, i.e., the “basis set”. 
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3. Potential Energy Surfaces 

The primary goal of computational quantum chemistry is to solve the Schrödinger 
equation (SE), , where E is the total energy of the molecular system, Ψ is the 
wavefunction describing the position and momentum of all the particles, and the 
Hamiltonian operator  specifies the kinetic and potential energies of all the particles in 
the system of study due to the Coulomb interactions present, both nuclei and electrons (in 
atomic units): 
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The terms in the above equation correspond to: kinetic energy of the electrons, kinetic 
energy of the nuclei, electron-nuclear attraction, electron-electron repulsion, and nuclear-
nuclear repulsion. Solving the full many-electron, many-nuclei Schrödinger equation is a 
formidable task and in general does not have analytical solutions.  Fortunately the two 
types of particles in molecular systems, nuclei and electrons, have very different masses 
and hence have vastly different timescales under which their motion takes place.  For 
example, in the case of the hydrogen molecule, the mass of the proton is 1836 times 
larger than that of the electron.  In this case heavy implies slow and thus to a high degree 
of accuracy the nuclear motion can be separated from the electron motion, i.e., from the 
electrons’ point of view they move about in the presence of fixed (stationary) nuclei and 
from the nuclei’s point of view as they move (vibrate/rotate), the electrons adjust 
smoothly and instantaneously to their motion.  This is the Born-Oppenheimer 
approximation, which has the practical effect of splitting the full SE into two equations: 
one for nuclear motion and one for electronic motion.  It is the latter 
one,  which is the focus of most quantum chemists.  The electronic 
Hamiltonian operator  has a similar form as the full  given in Eq. (1) but with the 
second term (nuclear kinetic energy) omitted and the last term (nuclear-nuclear Coulomb 
repulsion) is now just a constant for a particular choice of molecular geometry. 

ˆ H el Ψel = Eel Ψel

ˆ H el ˆ H 

 
The electronic Schrödinger equation is then solved as a function of the (fixed) relative 

nuclear positions (the internal coordinates), all 3n-6  of them (3n-5 for diatomics; n is the 
number of atoms), and the resulting values of Eel (one for each unique inter-nuclear 
orientation, i.e., molecular structure or geometry) defines the potential energy surface 
(PES), V(R).  This represents the potential energy for all nuclear motion, i.e., all the 
forces that the nuclei experience as a function of geometry. Solutions of the nuclear 
motion SE yield a molecule’s rotational and vibrational spectrum (these depend on the 
gradients, Hessians, and higher derivatives of the PES), and the topology of this surface 
(minima, barriers, valleys, etc.) can lead to the determination of reaction rates and 
mechanisms.  

A potential energy surface can range in complexity from a relatively simple one-
dimensional diatomic potential energy curve (V vs. R) to a multidimensional 
hypersurface of dimensionality 3n-6.  In fact a triatomic molecule already possesses too 
many internal coordinates (3) to simultaneously display the variation of its energy with 
its two bond lengths and angle, e.g., V vs. R1, R2, and θ.  One is immediately faced with 
visualizing only special “cuts” or “slices” of the full potential energy surface.  Locations 
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of energy minima yield the equilibrium positions of reactants, products, and 
intermediates.  Energy maxima can be associated with transition states.  A reaction path 
can be defined as the lowest energy route between reactants and products via a transition 
state. It can be visualized as a streambed leading uphill out of the lake or valley 
representing the reactants over a saddle in the mountains down to another valley or lake 
representing the products.   

The minima on a PES are defined by zero first derivatives (gradients) of the potential 

energy with respect to all internal coordinates, i.e.,
  

dV
dRi

= 0   ;  i =1,2,K,3n − 6.  In 

addition, all the second derivatives are positive (uphill in all directions).  A transition 
state also has all zero gradients, but one of the second derivatives is negative, which 
corresponds to the downhill direction of the reaction coordinate towards reactants and 
products.  The calculation of equilibrium structures is in principle straightforward since 
one only needs to search “downhill”. Of course there is no guarantee that a minimum that 
is found corresponds to the structure with the globally lowest energy (it could be a stable 
intermediate).  Calculating the structure of transition states can be much more difficult 
since they must have one and only one negative second derivative.  If a true transition 
state is located, there is also no guarantee that it connects the reactants and products of 
interest.   

Several techniques are available for characterizing the reaction path that connects 
reactants with products on the PES.  In the distinguished reaction coordinate approach, 
the reaction coordinate is assumed to be well described by changes in a single internal 
coordinate of the molecular system, e.g., a bond length or angle.  This special coordinate 
is then incrementally changed while minimizing the energy with respect to all of the other 
coordinates.  This method thus requires calculation of first derivatives of the PES. The 
resulting one-dimensional curve is an approximation to the actual minimum energy 
reaction path that passes through the transition state on to products.  The maximum in this 
curve corresponds to an approximate transition state structure.  The success of this 
method obviously hinges on the specific choice for the reaction coordinate.  A second, 
more rigorous method used for defining the reaction path is the intrinsic reaction 
coordinate (IRC) method, and it most closely describes the dynamics of the nuclear 
motion in the reaction. The IRC is defined by the line of steepest descent followed down 
(forwards towards products and backwards towards reactants) from the transition state 
using mass-weighted coordinates.  This method generally requires calculation of both the 
first and second derivatives of the PES along the path. 

 
 
4. Approximating the wave function (The Method) 

Outside of the Born-Oppenheimer approximation, one of the two most important 
approximations in solving the electronic Schrödinger equation involves the expansion of 
the many-electron wave function:  

  
Ψel = diΦi

i
∑ = d0Φ0 + d1Φ1 + d2Φ2 +L  (2) 

Where the di’s are just numbers (expansion coefficients) and theΦ ’s are Slater 
determinants, e.g., 

i

 3



 

  

Φ0 =
1
N!

φ1α (1) φ1β(1) φ2α (1)K φM β(1)
φ1α (2) φ1β(2) φ2α (2)K φM β(2)

L L L L

φ1α (N ) φ1β(N) φ2α (N )K φM β(N)

         (3) 

 
where N is the total number of electrons, M is the size of the basis set (see below), α/β 
are spin functions, and the φi  are spatial functions, i.e., molecular orbitals (note: a spatial 
function multiplied by a spin function yields what is called a spin orbital).  Interchanging 
any two rows or columns of a determinant changes its sign, and thus a Slater determinant 
yields the correct anti-symmetry of the electronic wave function. In particular this insures 
that the wave function obeys the Pauli Exclusion Principle (no two electrons can occupy 
the same spin orbital). 

So the main question is how many determinants do we include in the sum of Eq. (2)?  
If we restrict ourselves to just a single determinant, i.e.,Φ0, we obtain what’s called the 
Hartree-Fock (HF) approximation.  This is a variation method (the resulting energy is an 
upper bound to the exact energy) where the optimal set of molecular orbitals (those 
yielding the lowest energy) are determined in a process called the self-consistent field 
(SCF) procedure.  In regards to the Hamiltonian operator of Eq. (1), the HF 
approximation is directly related to how the electron-electron repulsion interaction is 
treated. This term refers to the instantaneous repulsion between individual pairs of 
electrons.  In the HF approximation, however, each electron experiences only the average 
repulsion of all the remaining electrons. The energy effect of these “missing” repulsions 
between pairs of electrons is called the correlation energy.  It is formally defined as the 
difference between the HF energy and the exact solution of the Schrödinger equation. 

Moving beyond the HF approximation involves recovering the effects of electron 
correlation, which implies adding additional Slater determinants to the expansion of Eq. 
(2).  There are many methods to do this and the number of acronyms grows at an 
alarming rate. There are three main categories among those methods that involve a 
wavefunction (methods called density functional theory (DFT) are currently also popular 
among chemists, but will not be discussed in this document): perturbation theory, 
configuration interaction, and coupled cluster theory.  The choice of method is dictated 
by computational speed/cost (i.e., measured as actual time to completion), accuracy, and 
the application under study.   

In Møller-Plesset (MP) perturbation theory, electron correlation is assumed to be a 
small effect and its impact on the energy is calculated to various orders of approximation, 
e.g., 2nd order MP perturbation theory or MP2, 3rd order (MP3), 4th order (MP4), etc. 
(MP1 is equivalent to HF theory).  At infinite order the energy is typically equal to the 
exact solution of the Schrödinger equation (however there is no guarantee that this series 
is actually convergent).  The computational cost increases strongly with each successive 
order of perturbation theory. 

Configuration interaction (CI) methods are generally a straightforward application of 
the linear variation method.  This method essentially states that no matter what wave 
function is used for the ground state, the energy is always greater than or equal to the 
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true energy.  A linear combination of Slater determinants is constructed and the 
coefficients multiplying each determinant are varied to yield the lowest energy.  Variants 
of CI theory are capable of very high accuracy, but generally the length of the expansion 
has to be very long (hundreds of thousands, millions, or more), which can lead to large 
computational expense.  Common applications of CI theory are CISD (singles and 
doubles CI) and MRCI (multi-reference CI). 

In coupled cluster (CC) theory an exponential operator is used in constructing the 
expansion of determinants in Eq. (2).  This leads to accurate, compact wave function 
expansions yielding accurate electronic energies.  Common variants are the CCSD 
(singles and doubles CC) and CCSD(T) (CCSD with approximate treatment of triple 
excitations) methods. 

 
 
5. Representing the molecular orbitals (The Basis Set) 

In order to build a wave function in terms of Slater determinants, the molecular 
orbitals first have to be defined.  The most common approach is to approximate each 
molecular orbital by an expansion of functions called the basis set: 

φi = Ckiχ k
k

M
∑  (4) 

The molecular orbital coefficients Cki are determined variationally in the SCF procedure.  
The basis functions χ k are centered on each atom of the molecule and mimic solutions of 
the hydrogen atom, i.e., s orbitals, p orbitals, etc. Hence this is called the linear 
combination of atomic orbitals-molecular orbital (LCAO-MO) approximation.  The 

individual basis functions are typically constructed of Gaussian-type functions (e ) of 
various widths (determined by the values of α) multiplied by spherical harmonic 
functions (to obtain p functions, d functions, etc.).  The basis functions 

−αr2

χ k can be either 
single Gaussian-type functions or they can themselves be expansions of Gaussians with 
fixed expansion coefficients (called contracted Gaussians).  Individual Gaussian 
functions are often referred to as primitive Gaussians.  In either case both the expansion 
coefficients (called contraction coefficients) and the exponents are previously optimized 
for a given atom in either a HF calculation or some type of correlated calculation.  The 
basis sets are tabulated and made available for users of computational chemistry 
programs (that’s you!). 

There are a very large number of basis sets that one can choose from for ab initio 
(from first principles, i.e., no empirical parameters) molecular quantum chemistry 
calculations. One family of sets are referred to as Pople-style basis sets, coined for Prof. 
John Pople who won the Nobel Prize in Chemistry in 1998 for making quantum 
chemistry readily accessible to chemists through his series of Gaussian computer 
programs.  Pople-style basis sets generally have a notation like 6-31G, which translates 
to: a single contracted Gaussian-type function consisting of 6 individual functions 
(primitives) is included to describe the electrons in low energy orbitals (e.g., the 1s 
electrons of carbon), and 2 contracted Gaussians to describe the valence electrons; one 
consists of 3 primitives contracted together and the other is a single, 1 uncontracted 
Gaussian-type function.  The definition of Pople sets like 3-21G and 6-311G follow 
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analogously.  Basis sets for accurate calculations require the addition of polarization 
functions, i.e., functions of at least one angular momentum higher than what is occupied 
in the bonding atoms that can be utilized to polarize the bond.  In H2 a p-type function 
can polarize the σ bond, whereas in N2 a d-type function is the primary polarization 
function.  The Pople-style notation is often modified by asterisks to denote polarization 
functions, i.e., 6-31G* denotes the additional of a d-type function to the basis (all 6 
Cartesian components) while 6-31G** denotes a p-type function on the H atoms and a d-
type function on all other atoms. Sometimes a more explicit notation is used, i.e., 6-
31G(d) and 6-31G(d,p) is equivalent to 6-31G* and 6-31G**. 

The second common choice of basis sets is the family of correlation consistent basis 
sets. These basis sets have the unique property of forming a systematically convergent 
set, i.e., they range from small to large and a series of calculations with a sequence of 
these basis sets can lead to accurate estimates of the complete basis set (CBS) limit.  This 
corresponds to the exact solution of the Schrödinger equation within the model chosen 
above, e.g., the exact HF, MP2, or CCSD(T) energy.  The notation for these basis sets has 
the form cc-pVnZ, which stands for ‘correlation consistent polarized valence n-zeta’ and 
n = D, T, Q, 5 … (double/triple/quadruple/quintuple/ etc).  The cc-pVDZ (Double-Zeta) 
basis set is similar in quality to the Pople-style 6-31G(d, p) set, while the cc-pVTZ 
(Triple-Zeta) set would be somewhat related to 6-311G(2df, 2pd). 

 
 
6. Computational Cost 

The obvious question after all this discussion is why not use the very best wave 
function method with the largest cc-pVnZ basis set available and hence get very close to 
the exact solution of the electronic Schrödinger equation? Unfortunately it comes down 
to how powerful of a computer you have and how long you are willing to wait for your 
answer.  From the form of the Slater determinant in Eq. (3), one can infer that the size of 
a calculation will scale with the number of electrons and the size of the basis set.  Each 
wave function method effectively includes various numbers of determinants and in 
principle the relative “cost” of a calculation with a given method can be simply related to 
the size of the basis set employed, e.g., 

 
Method Scaling of Cost 

HF M2 – M3 
MP2 M5 

CCSD M6 
CCSD(T) M7 

 
In the above table M is the number of basis functions.  Hence for the same molecule and 
basis set, a MP2 calculation is approximately 100 times more computationally demanding 
than a HF calculation.  A CCSD(T) calculation would then be about 100 times more 
expensive than MP2.  On the other hand, within a given method, e.g., MP2, increasing 
the size and accuracy of the basis set can substantially increase the time to solution and 
the computational requirements, e.g., doubling the basis set size will increase the 
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computational cost by roughly 25 or 32.  The choice of method and basis set is a balance 
between speed and accuracy.  Often the old adage, “you get what you pay for”, is true, 
but fortunately for many systems of chemical interest inexpensive methods like HF and 
MP2 yield excellent results (as judged by how close they reproduce known experimental 
values). 
 
 

7. Reading Assignments 
 

(1) Chapter 21 of Engel and Reid, Physical Chemistry, p 453 
(2) Chapter 27 by Dr. Warren Hehre in Engel and Reid, Physical Chemistry, p 597. 
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