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and Listeria innocua

Yage Shi,1,2 Juming Tang,2 Tianli Yue,1 Barbara Rasco,3 and Shaojin Wang2,4

1College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
2Department of Biological Systems Engineering, Washington State University, Pullman,

Washington, USA
3School of Food Science, Washington State University, Pullman, Washington, USA

4College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling,
Shaanxi, China

Listeria monocytogenes results in potential food safety concerns in ready-to-eat refrigerated products.
Cold-smoked salmon is a food considered to be at high risk for Listeria spp. contamination for which
a mild heat treatment or pasteurization step might be helpful to reduce microbial levels. Cold-smoked
salmon was inoculated with a cocktail of four strains (L. monocytogenes: ATCC19114, 7644, and 19113,
and L. innocua: ATCC51742) and inactivation curves obtained at 58, 60, 62, 64, and 66◦C using cap-
illary tube methods. Inactivation results showed typical log linear trends (R2 ≥ 0.97). D-values of L.
monocytogenes and L. innocua were 0.3 to 14.1 min at 66 to 58◦C, with a z-value of 5.2 to 6.5◦C and
activation energy of 332 to 414 kJ/mol. The nonpathogenic Listeria innocua ATCC51742 had com-
parable D- and z-values to the three strains of L. monocytogenes and thus can be used for validation
of pasteurization processes to control L. monocytogenes in cold-smoked salmon and potentially other
ready-to-eat thermolabile food products.

Keywords: D-value, z-value, cold-smoked salmon, Listeria monocytogenes, Listeria innocua

INTRODUCTION

Cold-smoked salmon is a popular high value food in much of Western and Eastern Europe and
the United States and has an expanding market in East Asia and South America. It has a delicate
texture, a mild flavor, and relatively high levels of polyunsaturated fatty acids (National Marine
Fisheries Service [NMFS], 2011). The common processing includes curing in dry salt or treatment
in a conventional salt brine that may contain sugar, spices, or other additives, followed by smoking
at ≤ 32◦C, resulting in a product with 3–8% water phase salt, corresponding to water activity of
0.95–0.98 and a pH of 5.9–6.3.

Correspondence should be addressed to Shaojin Wang, PhD, College of Mechanical and Electronic Engineering,
Northwest A&F University, Yangling, Shaanxi 712100, China. E-mail: shaojinwang@nwsuaf.edu.cn
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THERMAL INACTIVATION OF LISTERIA IN COLD-SMOKED SALMON 713

Listeria spp. are prevalent in the estuarine environment, but direct contamination of the cold-
smoked salmon with Listeria monocytogenes often occurs in processing plants, during initial
handling, brining, slicing, and packaging operations (Buchanan et al., 1997; Food and Drug
Administration [FDA], 2003, 2011a, 2011b; World Health Organization [WHO], 2004). L. monocy-
togenes adapts well in this type of food matrix and can survive over a wide range of temperatures,
including refrigerated temperatures to 4◦C (Shin et al., 2008), pH, and water activity (Huss et al.,
2000; Lianou et al., 2006; Ross et al., 2000). Preventive controls include good hygiene during pro-
cessing (Shin et al., 2008) and proper packaging (Shin et al., 2006), which can reduce the level
of contamination of L. monocytogenes in cold-smoked salmon. Salt addition alone at a level of
3.5–5% has no inhibitory effect on the growth of this microbe in cured ready-to-eat aquatic foods
during storage (Peterson et al., 1993; Shin and Rasco, 2007). Hurdle treatments to control Listeria
spp. growth on these foods are somewhat effective (Al-Holy et al., 2004b, 2005), although other
strategies would be helpful for Listeria spp. control. Since this product is usually consumed without
further cooking, the presence of L. monocytogenes in the cold-smoked salmon may present a food
safety risk to susceptible individuals (de Valk et al., 2005).

The incidence of L. monocytogenes in smoked fish may be as high as 15% (Ben Embarek, 1994;
Guyer and Jemmi, 1991; Heinitz and Johnson, 1998; Jemmi and Stephan, 2006). Awareness of the
risk coupled with mandatory implementation of the Hazard Analysis and Critical Control Points
(HACCP) in the aquatic foods industry in 1995 has likely reduced the incidence in smoked fish
produced in the United States (FDA, 2003). The U.S. Department of Agriculture and FDA imple-
mented a zero tolerance for L. monocytogenes in ready-to-eat (RTE) meat products (Muriana et al.,
2002; Vail et al., 2012), and postpackaging pasteurization treatments are widely employed for deli
meats and similar food items to control Listeria spp. Thermal processing can be potentially used to
control L. monocytogenes in cold-smoked salmon (Suutari and Laakso, 1994; Bremer et al., 2002)
and might not substantially affect product sensory characteristics, but there is no published infor-
mation about the thermal resistance of various L. monocytogenes strains in this particular type of
product.

To develop effective thermal processes, the inactivation kinetics of the target microorganism
must first be developed at various processing temperatures under isothermal conditions (Chung
et al., 2007; Jordan et al., 2011). Pathogenic L. monocytogenes should not be used to validate a
pasteurization process in food processing plants because of critical safety requirements for workers,
the product, and the processing environment. Instead, a surrogate microorganism should be used. L.
innocua is nonpathogenic and has been recommended as a surrogate for L. monocytogenes in ther-
mal process validations (Al-Holy et al., 2004a, 2004b; Margolles et al., 2000; Miller et al., 2009b).

Parameters derived from first-order thermal inactivation kinetics for food-borne micro-
organisms—namely, decimal reduction values (D-values) and z-values—have been used to design
effective commercial thermal pasteurization processes in production of RTE meat products
(Grosulescu et al., 2011). Other kinetic models, such as Weibull-type and modified Gompertz mod-
els, are also used to describe survival curves of L. monocytogenes under different thermal treatment
conditions (Huang, 2009), taking into account possible deviations from first-order kinetics behav-
iors, typically, the shoulder and tailing effects in the survival curves for thermal treatments using
moderate treatment temperatures (56–66◦C; Miller et al., 2011). The thermotolerance of L. mono-
cytogenes and L. innocua depends upon various factors, such as the food matrix, in this case fat
and salt levels, water activity, pH values, and heating methods (Juneja et al., 1998). Huang (2009)
reported D-values of L. monocytogenes to be around 5.6 and 0.4 min at 57 and 63◦C, respectively,
in ground beef with z-value of 6.0◦C. Those values are comparable to that reported for duck muscle,
turkey breast, and chicken breast (Murphy et al., 2003). Li et al. (2011) reported D-values of L.
innocua in poultry to be 8 and 4 min at 60 and 70◦C, respectively. Miller et al. (2009a, 2011) also
reported that D-values of L. innocua in broth were 7.1 and 0.46 min at 57.5 and 65◦C, respectively,
with z-value of 6.9◦C. Except for work conducted on ikura and sturgeon caviars (Al-Holy et al.,
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714 SHI ET AL.

2004a, 2004b, 2005), which have a similar salt content but higher fat than cold-smoked salmon,
there is little information available on thermal inactivation kinetics of L. monocytogenes strains in
RTE aquatic foods and relative thermal resistance of the potential surrogates that could be used for
validation of thermal pasteurization processes under mild heating conditions. Having thermal treat-
ment data for cold-smoked salmon would be important because of the popularity of this food in the
world market.

The objectives of this study were to determine D- and z-values of L. monocytogenes during
thermal inactivation in RTE cold-smoked salmon, calculate thermal death rate constant and activa-
tion energy of L. monocytogenes, and compare thermal lethality kinetics of L. monocytogenes with
those of L. innocua in RTE cold-smoked salmon to determine if L. innocua would be a suitable
microorganism for process validation studies.

MATERIALS AND METHODS

Meat Preparation

Cold-smoked sockeye salmon (Oncorhynchus nerka) was purchased from a local market (Pullman,
WA, USA) and kept at −20◦C prior to the experiments. The salmon sample was thawed at 4◦C
overnight before thermal treatments. The muscle contained about 67.5% moisture and 2.08% salt
(as is basis) and had a water activity of 0.96 and a pH of 5.64.

Bacterial Preparation

Three isolates of L. monocytogenes (ATCC19114, 7644, 19113) and one potential surrogate isolate
of L. innocua (ATCC51742) were obtained from the Food Microbiology Laboratory at Washington
State University (Pullman, WA, USA). These four strains were selected since they have been com-
monly observed in seafood products such as salmon and Sturgeon caviars (Al-Holy et al., 2004a,
2004b; Shin et al., 2007). Each isolate strain was transferred individually onto the slants of Listeria
PALCAM medium base (Difco Laboratories, Sparks, MD, USA) that was supplemented with a
Bacto PALCAM antimicrobic-selective supplement. From each slant, a sterile loop of culture was
transferred to 50 mL tryptic soy broth (TSB; Difco, Becton Dickinson, Sparks, MD, USA) plus
1% yeast extract in a 250 mL screw-cap dilution bottle and then incubated at 37◦C for 24 h. Cells
in the stationary phase were used for the thermal inactivation experiments, because this phase is
more resistant than those in the active phase of exponential growth (Carlier et al., 1996). Listeria
cells were harvested by centrifugation at 25,000 × g for 30 min and washed in an equal volume
of sterile 0.1% peptone water. The supernatant was removed after centrifugation. The pellets were
resuspended in 0.1% peptone water (pH 7.2 ± 0.2; Difco) and centrifuged at 25,000 × g for 30 min
again. This washing procedure was repeated three times to remove residual TSB. The pellet was
resuspended in 0.1% peptone water, corresponding to approximately 108–109 CFU/mL.

Inoculation

Ten grams of smoked salmon (homogenized aseptically) was placed aseptically into a sterile Petri
dish and air-dried for 10 min in a biosafety hood with a fan to remove surface moisture, then
mixed with 100 µl culture (approximately 108–109 CFU/mL). The inoculation samples were
ground and mixed using a coffee grinder (ID557, Mr. Coffee, Guangzhou, China) for 2 min and
followed by a manual mixing to further homogenize the salmon samples. The inoculation level of
L. monocytogenes and L. innocua varied from 106 to 108 CFU/g.

Each of the inoculated samples was kept at 4◦C for 30 min to allow bacterial cells to adhere onto
fish tissue. About 0.2 g inoculated sample was carefully and aseptically injected into a glass capillary
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THERMAL INACTIVATION OF LISTERIA IN COLD-SMOKED SALMON 715

tube with an inner diameter of 1.8 mm and an outer diameter of 3 mm (Corning, Inc., Corning, NY,
USA), using a sterilized syringe with an 18-gauge, 15.2-cm pipetting needle (Popper & Sons, Inc.,
New Hyde Park, NJ, USA). The open end of the tubes was heat sealed about 20 mm above the
sample to avoid thermal influence on the microbial survival (Al-Holy et al., 2004a). For each trial,
inoculated and unheated controls were prepared, and the initial inoculation level determined.

Heat Treatment

Sets of capillary tubes were submerged completely in a circulated water bath (Model ZD, Grant,
Cambridge, UK) preheated to one of five temperatures: 58, 60, 62, 64, and 66◦C. These tempera-
tures were selected based on the achieved reduction in similar fish products (Al-Holy et al., 2004a,
2004b, 2005) and acceptable salmon quality (Kong et al., 2007). After the sample center temperature
reached within 0.5◦C from the set-point, the heating time was started (t = 0). Sets of capillary tubes
were removed from the water bath at predetermined time intervals from 14 s to 18 min depending
upon the temperature, so that an approximate equivalent log reduction was achieved at each temper-
ature. After heating, the capillary tubes were removed from the water bath and cooled immediately
in an ice water bath.

The central temperature of the uninoculated homogenized cold-smoked salmon inside the glass
capillary tube was measured with a thin precalibrated Type-T thermocouples (THQSS-020u-6,
Omega Engineering Inc., Stamford, CT, USA) having an accuracy of ± 0.5◦C and an 0.8 s response
time. All data were recorded with a data logger (DL2e, Delta-T Devices Ltd., Cambridge, UK) for a
time interval of 2 s during heating, holding, and cooling. Since a very small ca. 0.2 g muscle sample
was used in this study, care on the sensor insertion and fixing was taken to reduce any experimental
errors from the temperature measurements.

Bacterial Enumeration

After cooling, both ends of the capillary tubes were aseptically removed. The heated salmon was
flushed out of the capillary tube with 2 mL of sterile 0.1% peptone water. Then, the heat treated
samples were 10-fold serially diluted in sterile 0.1% peptone water. Appropriate dilutions were
made and then 1 mL of each serially diluted sample was pour-plated with TSA medium in duplicate.
Solidified plates were incubated for 2 days at 37◦C. The number of colonies was manually counted.
All experiments were conducted in duplicate.

D- and z-Values

To mathematically describe experimental survival curves of the sampled cultures of L. monocyto-
genes, we attempted to fit the data with different orders of reaction and found the first-order to be
the best based on the goodness of fit. The first-order thermal inactivation kinetic model is described
as follows (Stumbo, 1973; Huang, 2009):

dN

dt
= −kN, (1)

where N (CFU/g) represents microbial population, t (min) is heating time under an isothermal
condition, and k (min−1) is the rate constant. After integration, the above equation can be represented
as a plot of the log of the number of surviving cells versus heating time (Stumbo, 1973; Chung et al.,
2007; Muriana et al., 2002):
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716 SHI ET AL.

log N = log No − t

D
. (2)

D-values were obtained from –1/slope of the best-fit line at each temperature with D = 2.303/k.
Plotting log D-values against temperature is often linear and is commonly referred to as the thermal-
death-time (TDT) curve (Holdsworth, 1997).

A z-value was obtained as the temperature increases, resulting in one log reduction in D-value
from the TDT curve, that is:

z = T2 − T1

log DT1 − log DT2

, (3)

where DT represents value of D measured at temperature T , and T1 and T2 are two different temper-
atures (◦C). The z-value (◦C) was obtained from the –1/slope of the regression equation plotting the
log D value versus temperature.

Activation Energy

Two independent methods were used to calculate the thermal lethality activation energy (Ea in
Joules per mole) of L. monocytogenes and L. innocua in RTE cold-smoked salmon. Ea is used to
determine the sensitivity of pathogens to changes in temperature; higher activation energy refers to
higher sensitivity. Ea was calculated using the first method by the following equation:

Ea = 2.303R TminTmax

z
, (4)

where R is the universal gas constant (8.314 J/mol K), and Tmin and Tmax are the minimum and
maximum absolute temperatures (◦K), respectively, of a test range. The second method for calcu-
lating Ea was by using the slope of an Arrhenius plot of log k versus the reciprocal of the absolute
temperature (1/T) as follows:

log k = log k0 − Ea

2.303 RT
, (5)

where k0 is the reference thermal lethality rate constant (1/min).

Statistical Analysis

Differences in D-values of four different strains subjected to heat treatments were analyzed from
two independent duplicate experiments. The mean differences were separated at significance level
of p = 0.05 (SAS Institute, Cary, NC, USA).

RESULTS AND DISCUSSIONS

Heat Treatments

Figure 1 shows temperature–time histories (core temperatures) for the samples in the capillary tubes
at five selected temperatures. Come-up times averaged approximately 14 s for all the test tempera-
tures, after which the samples experienced close to ideal isothermal exposure. This come-up time is
similar to that observed in the same capillary tube with mashed potato samples (Chung et al., 2007)
and salted cured ikura (Al-Holy et al., 2005). The sample temperature during holding time was
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THERMAL INACTIVATION OF LISTERIA IN COLD-SMOKED SALMON 717

FIGURE 1 Temperature-time history for center (core) temperature of smoked salmon homogenate in capillary tubes
heated in hot water bath at the listed set-points. The samples were cooled in ice water.

FIGURE 2 Survivor curves of L. monocytogenes ATCC7644 in cold-smoked salmon heated at five temperatures.

relatively constant and the cooling process took less than 8 s for core temperatures to drop to less
than 10◦C. Figure 2 shows typical survival curves of Listeria monocytogenes strains ATCC7644 at
the five tested temperatures. Similar survival curves of other three strains were also obtained but
only D-values are shown in Table 1. The survival curves were semi-log linear with high coeffi-
cient of determination (R2 ≥ 0.974), without showing initial shoulders and tails, which could be
caused by instant heating and cooling using the capillary tube (Chung et al., 2007) or TDT cells (Jin
et al., 2008). Thus these survival curves can be described using first-order kinetics under isothermal
conditions (Chung et al., 2007; Sorqvist, 2003).

D- and z-Values

D-values of L. monocytogenes and L. innocua are summarized in Table 1. As expected, D-
values of the four strains decreased sharply with increasing temperature from 58 to 66◦C. At low
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718 SHI ET AL.

TABLE 1
D- and z-values (mean ± standard deviation, n = 2) for Listeria monocytogenes and L. innocua (51742) at five

temperatures

D-values (min)

ATCC 58◦C 60◦C 62◦C 64◦C 66◦C z-value (◦C)

19113 14.09 ± 0.26a∗ 3.76 ± 0.09a 2.27 ± 0.07a 1.06 ± 0.03a 0.64 ± 0.06a 6.18 ± 0.13ab
7644 11.33 ± 0.12b 3.82 ± 0.04a 1.96 ± 0.07a 0.81 ± 0.01b 0.30 ± 0.02b 5.23 ± 0.08c
19114 8.10 ± 0.11d 3.83 ± 0.13ab 2.34 ± 0.15a 1.12 ± 0.02a 0.43 ± 0.01ab 6.45 ± 0.01a
51742 9.68 ± 0.06c 4.24 ± 0.04b 2.13 ± 0.07a 1.08 ± 0.08ab 0.44 ± 0.02a 6.06 ± 0.01b

∗Within each column, means followed by different letters are significantly different (p < 0.05).

FIGURE 3 Thermal death time curves for L. monocytogenes and L. innocua in cold-smoked salmon homogenates.

treatment temperatures (58 or 60◦C), L. innocua ATCC51742 was significantly less heat resistant
than L. monocytogenes (p < 0.05). But at high temperatures (> 60◦C), D-values of L. innocua
ATCC51742 were statistically similar to or larger than those of L. monocytogenes (p < 0.05), sug-
gesting that L. innocua ATCC51742 can be used as a conservative surrogate of L. monocytogenes in
cold-smoked salmon for validating thermal treatments at temperatures of 60◦C or higher, but may
not be reliable at lower temperatures. Similar heat resistance has been observed by Al-Holy et al.
(2004a, 2004b, 2005) for fish roe products at similar salt content and by others for aquatic foods
(Ben Embarek, 1994; Ben Embarek and Huss, 1993; Huss et al., 2000).

Figure 3 shows relationships between D-values and heating temperatures for the tested strains.
The z-values were obtained by linear regression of the log D against temperature with R2 =
0.965–0.998. The z-values of L. innocua ATCC51742 and ATCC 19113 were significantly larger
than those of ATCC 7644 but smaller than those of ATCC 19114 (p < 0.05; Table 1). The average
z-values varied between 5.2 and 6.2◦C, which are comparable to other stains of L. monocytogenes
tested in ground beef, duck muscle, turkey breast, and chicken breast (Farber and Peterkin, 1991;
Huang, 2009; Murphy et al., 2003). The heat resistant difference between this study and others is a
result of differences in pH and salt content and to a lesser extent the heating method used (Doyle
et al., 2001; Ghazala, 1998; Juneja et al., 1998).

Many factors that may influence the thermal resistant data must be taken into account for com-
parisons. D-values for L. monocytogenes in surimi-based imitation crabmeat are 2.1 min at 62◦C and
0.4 min at 66◦C for stationary-phase pathogens that were heated in thin plastic pouches (Mazzotta,
2001), a material that has significantly less fat and a much lower salt content than cold-smoked
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THERMAL INACTIVATION OF LISTERIA IN COLD-SMOKED SALMON 719

salmon. A D-value of 4.2–4.5 min at 60◦C for two strains of L. monocytogenes in vacuum packaged
sous-vide cooked salmon fillet was reported by Ben Embarek and Huss (1993), and D-values of 3.0,
0.8, and 0.4 min at 60, 63, and 65◦C, respectively, were obtained using a novel aluminum tube for
salmon caviar with similar ionic strength to some cold-smoked salmon but a higher fat content (Al-
Holy et al., 2004a). Bremer and Osborne (1995) observed D-values of L. monocytogenes in green
shell mussels to be 16.25, 5.49, and 1.85 min at 58, 60, and 62◦C, respectively, a material that is sub-
stantially different biologically from salmon muscle. Muriana et al. (2002) reported D62.8 = 6.9 min
and D65.6 = 1.2 min for RTE smoked turkey, D62.8 = 1.6 min and D65.6 = 0.9 min for roast beef, and
D62.8 = 1.13 and D65.6 = 0.49 min for smoked ham, respectively. These studies reported a z-value
for RTE smoked turkey, roast beef, and smoked ham of 5.1, 5.7, and 7.9◦C, respectively. Several
studies on the thermal resistance of L. monocytogenes in meat products show that z-values range
from 4.6 to 4.7 (Carlier at al., 1996). Although a wide range of D- and z-values of L. monocytogenes
is reported in the literature, the D-value of 2 min at 62◦C and an average z-value of 6◦C seem to
be typical (Augustin, 1996; Fairchild and Foegeding, 1993; Farber, 1989; Mackey and Bratchell,
1989).

Thermal Death Rate Constant and Activation Energy

Figure 4 shows an Arrhenius plot for temperature effects on thermal lethality rate constant both for
L. monocytogenes and L. innocua in cold-smoked salmon samples. The log k decreased lineally with
the reciprocal of the absolute temperature for all four strains. The reciprocal of the slopes could be
used to calculate the activation energy using Equation (5).

Table 2 compares the activation energies for L. monocytogenes and L. innocua estimated by both
the TDT curve and the k-T curve methods. The differences in activation energies between TDT and
k-T curves were small both for L. monocytogenes (< 3.5%) and L. innocua (1.2%). The activation
energies for all four strains were similar, which was expected based on the similar slopes of TDT
curves in Figure 3. The ATCC 7644 strain showed the greatest differences in activation energy from
the other tested strains. The observed level of activation energy was in good agreement with those
reported for controlling L. monocytogenes in ground chicken breast (381 kJ/mol; Murphy et al.,
2000) and Listeria in chicken patties (352 kJ/mol; Murphy et al., 2001) and soymilk (305 kJ/mol;
Igyor et al., 2012).

With good hygiene practices in processing plants, the numbers of L. monocytogenes have found
to be low in cold-smoked salmon—e.g., 0.3 and 34 cells/g reported in Eklund et al. (1995). Thus,

FIGURE 4 Arrhenius plot for temperature effects on the thermal lethality rate constant for L. monocytogenes and
L. innocua in cold-smoked salmon.
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720 SHI ET AL.

TABLE 2
Activation energy for Listeria calculated from thermal death time (TDT) curves (Equation 4) and k-T

curves (Equation 5)

Activation energy (kJ/mol)

ATCC TDT curve k-T curve

19113 348.0 349.6
7644 413.6 416.4
19114 331.9 343.4
51742 352.5 356.6

a typical 6 log reduction of the microorganism may be used as the criteria to design a thermal
pasteurization process. Based on Table 1, a 6 log thermal process would require 7 min full exposure
at 64◦C or 4 min at 66◦C. Pasteurizing under these conditions is likely to have a significant impact
on the sensory characteristics that cold-smoked salmon is prized for. Further studies are needed
to evaluate the influence of such thermal processes on consumer acceptance of thermally treated
products.

CONCLUSIONS

The isothermal heating was achieved in cold-smoked salmon homogenates using a capillary tube
method with a short come-up time of 14 s. The four selected strains (ATCC19114, 7644, 19113, and
51742) of L. monocytogenes and L. innocua demonstrated typical first-order inactivation character-
istics under isothermal test conditions. The D-values of L. monocytogenes and L. innocua decreased
sharply with increasing temperature from 58 to 66◦C. The z-values varied between 5.2 and 6.2◦C
for Listeria strains. The activation energies for L. monocytogenes and L. innocua were reliably esti-
mated by both the TDT curve and the k-T curve methods, resulting in small differences of below
3.5%. Although the relative heat resistance demonstrated the potential of a pasteurizing process
to protect the product from Listeria, more studies are required to determine the impact of such a
process on the sensory characteristics of the product. Any large-scale validation studies using L.
innocua must be conducted at temperatures greater than 60◦C for pasteurization of cold-smoked
salmon products.
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