This
page has been accessed times
since 5 June 1996.
This is Part Three of a Four Part series on
finding support for papers and speeches.
Things
to Consider about Statistics
Another form
of evidence is statistics. Statistics are a favorite evidence of many writers
and speakers. They provide actual numbers in support of ideas and conclusions.
If you can show that 75% of high schools seniors cannot find
Statistics are a prime source of proof that
what you say is true. Statistics are based on studies: a search for possible
connections between disparate facts that nonetheless have a connection. If you
remember your math classes, you will recall the concept of sets and subsets.
Statistics are, in large measure, concerned with that concept. They are
basically telling you the proportion a subset represents in a set. To clarify
this idea, look at political polls. Candidate A receives 46% approval,
Candidate B receives 43% approval. Thus, the subset "responses favoring
Candidate A" is 46% of the whole set, "People asked about Candidates
A and B."
Another example, from real
life. William Chadwick, with his
assistant William Farr, during the great cholera plague in
Statistics also use samples to obtain
results, rather than doing actual "head counts". Neilson ratings on
how many of what kind of people watch a particular TV program is not determined
by the Neilson company asking all 300 million people in the United States what
they are watching every few minutes. What they use is a sample of the
population (called the Neilson families) that, demographically, represent the 300 million people. Neilson selects these
families very carefully since each one represents the viewing habits and
desires of some 60,000 people. Nonetheless the statistics generated by the
Neilson measurements are used to make programming decisions and set advertising
rates and budgets, things that represent billions of dollars. Thus the selection of the sample, whether Neilson's or incidence of
AIDS in the
The above is, of course, a simplistic view of
an extremely complicated discipline. It is, nonetheless, the essence of
statistics.
Statistics are invaluable as evidence in
support of conclusions. If you can either find or generate statistics that show
the truth of your conclusions, there are few that would refute your ideas.
There are, of course, problems with using
statistics as evidence. Let me remind you of a famous saying: "There are
three ways to not tell the truth: lies, damned lies,
and statistics." What you must do is ask yourself some questions: who did
the study that came up with the statistics, what exactly are the statistics
measuring, who was asked, how were they asked, and compared with what? If one
believes in the truth of statistics (and there are many such), then how does
one explain that the same Presidential candidate can be 20 points ahead and 5
points behind his opponent in the polls at the same time? After all, both polls
are "statistics". What you must be examine, if you wish to use
statistics as evidence, are the above questions.
Let us examine first "who did the
study." We live in a world of statistics: you can find numbers in support
of just about any idea. The problem arises when you find statistics that
support every way of viewing an idea. You can find statistics that show
cigarettes are killers and that they have no effect on anyone's health. You can
find statistics that say you should cut down on the consumption of dairy
products and that dairy products are good for you. You can find statistics that
prove that so ft drinks will give you cancer and that they have no effect on
anything but your thirst (or even that they make you thirstier). Every one of
these sets of statistics is absolutely true.
The phrase "numbers don't lie" is
true; what you need to examine is who is publishing the numbers, and what are
they trying to prove with them. Are the statistics provided by the American
Cancer Society or the American Tobacco Institute? Are they provided by the
American Medical Association or the American Dairy Association? Are they
provided by the Cancer Institute or the United States Food and Drug
Administration? (Did the latter give you pause? It should. Both are reputable.
Yet both have differing opinions based on statistics.)
Every point of view uses statistics to
support their ideas. It's your job to examine all statistics supporting all
points of view, to arrive at your own conclusions based on all of them. If you
can't arrive at a conclusion, do your own study. An easier course, naturally,
is to find out what all possible sides have to say and what other evidence they
have in support of their statistics.
Once you have determined whether or not there
is prejudice involved in the statistics (please recall that subjectivity is
unavoidable), then it is time to move on to the next question: what are the
statistics measuring?
What are the Statistics
Measuring
When asking yourself,
"what are the statistics measuring," bear in mind the old saw about
measuring apples and oranges. Most people will say that you can't compare
apples and oranges. This is both true and false. It depends on WHAT YOU ARE
MEASURI NG. Color? No. Texture?
No. Overall appearance? No. Acidity?
Yes. Sugar content? Yes. Vitamin, mineral, carbohydrate, or
fat content? Yes.
As you can see, it is possible to compare
apples and oranges, if you know what you are measuring. Your job, in using
statistics as evidence, is to determine what exactly is being measured, and not
simply spout numbers that seem to apply to your topic. If your topic is
"Nutritional Value of Oranges," statistics proving that apples are
nothing like oranges may be measuring the wrong things.
Once you've determined what the statistics
are measuring, you next need to find out how the research was done. Many
studies, the results of which are disseminated using statistics, are done by
asking people their opinions or what they do or think or feel or . . .. Such
studies include political, sociological, consumer behavior, media audience, and
other areas which are based on individual people's ideas, opinions and/or
attitudes.
Such areas are often referred to as
"soft sciences", as opposed to "hard sciences" that do
research designed to minimize as much as possible the human factor in the
evidence and conclusions. The "human factor" is, naturally,
impossible to eliminate totally as long as humans are involved, but the studies,
to be "scientific," must be repeatable and predictive in nature. That
is, once a study has been done, equivalent results must appear when the study
is done again by other researchers who have no connection with the original
researchers, and the results should allow researchers to say what will happen
next.
Let us say that scientific statistics show
meteors fall during a specific period (say, August) at an average rate (say, 60
per hour). This study is repeated several years during August and the rate stays
the same. Thus the study is repeatable. From those statistics it is possible to
predict that in future years the average rate of shooting stars in August will
continue to be 60 per hour. In this case, "who is being asked" are
the impersonal forces of nature.
It is the soft sciences that most often,
intentionally or unintentionally, misuse or misapply statistics. The studies
are often not repeatable and usually not predictive. The reason for this is
that people and what they say or do are the bases of t he statistics. It seems
axiomatic that people will perversely refuse to say or do the same thing twice
running, or let anyone predict what they will do. In fact, many people consider
themselves insulted when called predictable, and anything from the weather to
the time of day to who's asking the question can change what they will say or
do about something.
What does this mean to you as you examine the
statistics you plan on using as evidence? First, try to determine whether the
statistics are hard or soft science based. The simplest way to do this is
simply find out if people or nature is being studied. If nature it's hard
science, if people it's soft.
Second, if the statistics are hard science,
check to see what results other researchers who have repeated the study
obtained. If the second study has results that vary widely from the first, find
a third and/or fourth and use the results that are consistent overall.
Of course, hard science statistics often
require that you examine who was asked. Check the sample: if the statistics say
that 30% of the
Soft science statistics are even more slippery
than hard science statistics. First, there are few hard, repeatable,
non-subjective facts on which to base the statistics. If you wish to show how
people react to violence, how do you define violence? And how do the people in
your study define violence (a victim of a mugging may define violence as
getting within five feet of him, while a mugger may define it as anything that
happens that causes him physical damage (what he does to others is simply high
spirits)).
Also bear in mind that any study that uses
human subjects is almost impossible to conduct under laboratory conditions, in
which all factors that could effect the outcome of the
experiment are controlled, including the variable under study. For a truly
statistically valid study showing the effects of television violence on
children, the children would have to isolated from all
other factors that could have an influence. These other factors would include
contact with other human beings, with other expressions of violence (people,
reading, radio, movies, newspapers, video games, etc.). This would obviously
work to the social and developmental detriment of the children.
As a matter of fact, a recent controversy
arouse over using medical data collected by the Nazis in the concentration
camps. These data were collected with absolutely no regard for the fact that
the test subjects were human beings; they were treated much worse than any
laboratory animal in the world today. Ethical and moral considerations aside,
the data are viewed as valuable. However, there are people who believe that the
ethical and moral considerations are paramount, and that the data, no matter
how valuable, should be destroyed because of the way they were gathered.
#
In addition to the fact that any study
involving humans must take into account human and humane considerations, you
should never underestimate the perversity of a human being. In studying comedy
one of the first things I learned was never tell the audience I was going to be
funny. The moment a comedian says to an audience, "You're really going to
find this funny," the same audience that moments before was falling out of
their chairs laughing will turn cold and silent, with an "Oh, yeah? Show
me" attitude.
In the same vein, a truism in advertising is
that fifty percent of advertising works; the problem is no one can figure out
which fifty percent. The reason is that no one can really figure out what will
influence people to buy products.
To try to understand "soft"
statistics, let's take a look at advertising research and consumer behavior,
both of which are subsets of socio- and psychological research. In particular,
we'll look at some basic axioms of consumer research that apply to any soft
statistics.
First is the realization that all people are
different. No two people, not even identical twins, are exactly the same
background and upbringing, have had the same conversations in the same words,
have read the same books or magazines or newspapers at exactly the same time,
or done anything the same as anyone else. This fact is precisely the opposite
of what is necessary to statistics -- that there are similarities that give
significance to the variables.
There are, of course, some factors that many
people have in common with other people, and upon them statistics depend. These
factors can include the society in which they live, their social class, whether
they are urban, suburban or rural; their relationships -- most people have had
a mother and father, perhaps siblings, friends of the same or opposite sex; and
their interests: sports, television, reading science fiction or mysteries or
romances. Of course, not everybody fits into all categories. Again, all people
are different, but they do have some things in common.
What the above means is that no statistic has
any application to an individual, but can have an application to the group.
However, the statistics are determined on the basis of studying individuals in
the group, not studying the group. Now recall the problems with individuals.
First, individuals change, not only from year to year but from moment to
moment.
Second, individuals are inconsistent. What
they like today they may hate the next. You may love spaghetti, but eat it five
days in a row, and you may find the thought of eating it again nauseating.
Third, individuals often don't know what they
want, and even if they do, they don't know or can't tell you why.
#
Then there are a few problems involved in
surveying individuals to gather the information to formulate the statistics.
First, people often can't remember information about themselves and thus the
background can be incomplete. If you don't believe this, recall exactly when
you got your last tetanus booster shot, or the grade you got in freshman
English in high school.
Second, there is a prestige bias. Answers a
person gives involve the person personally -- his or her pride, self-esteem and
self-image are involved. Thus people will often give an answer that will
heighten their image. According to TV viewing diaries, nobody watches
professional women's wrestling, but Masterpiece Theatre has a 50 rating. In
some classes a few years ago I ran a survey that, as a part of the background,
asked "How many hours do you watch television during an average
week." The average answer was seven hours per week (please recall that the
national average is seven hours per day). Granted, college students do not
usually have a great deal of time to devote to watching TV, but the classes in
which I gave this survey were advertising and mass media criticism, both of which
require watching television. What's more, for people who avowed little interest
in television, these same students had a near encyclopedic knowledge of details
about programs and/or commercials that were discussed, in many cases rivaling
my own (I watch television an average of eight hours per day). It was clear
that the responses on the survey bore little relationship to reality.
Nonetheless, I was not surprised at the responses. Television watching
traditionally has a prestige problem, and prestige bias clearly influenced how
people answered the question.
Third, people lie. That may seem a bit blunt,
but there is no reason to sugarcoat. People not only stretch the truth, fib or
misspeak themselves. They lie. Ask them a question and, just for the hell of it
they may lie. They may lie because they find the truth uncomfortable or
embarrassing, or because they simply want to screw up your results. With lying
a virtual social necessity (do you really tell your best friend that his or her
breath could knock a buzzard off a honey wagon?), the fact the people lie when
responding to studies should come as no surprise.
Finally, many studies not only try to find
out what people do, but why they do it. Here the problem lies in respondents'
inability to articulate or explain their true feelings and motivations. Many
people do things because it "feels" like the thing to do, but they
cannot explain what that feeling is or how it arose. They will do the best they
can, but since so many such feelings are subconscious and/or based on a priori
assumptions, they have never been examined and put into words.
It is not only the respondents but the
questioners that contribute their own prejudice to the gathering of facts.
Two things that are used in surveys and
statistical studies are questions and answers. First, let's examine the
questions.
Researchers generally have an idea what their
research is looking for. They thus formulate questions that will illuminate
their research, either pro or con. Prejudice can creep in when a researcher
unconsciously words questions in such a way that the answers support his or her
contention or opinion. Various questions of this type are leading questions,
loaded questions, and double-barreled questions.
Leading questions are those that tell the
respondent how to answer. Attorneys sometimes use them. For example, "Is
it not true that on the night of the 27th you were drunk?" Such a question
leads the respondent to say yes. Asking instead, "Were you drunk on the
night of the 27th?" does not tell the witness how to respond.
Loaded questions are those that, no matter
how they are answered, the respondent loses. "Are you still beating your
wife?" and "Are you still cheating on your income tax?" are
examples. A loaded question appears to ask for a yes or no answer, yet the
actual answer may be neither yes nor no.
Double-barreled questions are those that ask
for more than one piece of information in the same question. For example,
"Do you go up or downtown in the afternoon?" is double-barreled.
Another point to be considered is how the
questions were worded. It is easy, and often subconscious, for the questioner
to word the questions in such a way as to lead to respondent to reply in a
certain way. For example, a survey on whaling could ask, "Should the only
three countries in the world that do so, continue to slaughter to extinction
the helpless, harmless intelligent giants of the deep?" I surmise that few
people would respond with a yes.
It is the answers that sometimes cause
difficulty for a researcher. The problems lie not only in how the respondents
answer, but in how the researcher responds to the answer. Sometimes the
response is not what the researcher wants or needs and/or contradicts
expectations. He or she must then account for the anomaly. He or she may revamp
the original concept or theory, revamp the study, or even ignore the data. The
researcher may fall prey to selective perception (seeing only what you want to
see) or cognitive dissonance (rationalizing away anything that doesn't fit into
your preconceptions). In addition, how the researcher interprets the words in
the questions may be at odds with how the respondents interpreted the words.
For example, in a recent survey on the incident of rape on college campuses,
the questions used words such as unwelcome sexual advance; the researcher
interpreted unwelcome sexual advance as rape, while the respondents could well
have been referring to a drunk at a bar making a pass, something that most
people would accept as disgusting, but not rape.
The order of the questions can also be a
problem. Often, the questions can lead a respondent to answer in a certain way
because he or she has answered all the previous questions in the same way. In
sales, it's a common technique, that can lead a respondent
through a series of yes answers, from "it's a nice day," to
"sign here."
Thus "How were they asked?"
requires an examination of the original study in order to see if the researcher
may have made an error in questioning and in understanding the answers.
Finally, you need to examine statistics to
determine what are the comparisons being drawn and are they relevant and valid.
For example, say your topic is gun control. You could find statistics on murder
rates with handguns per capita in
For instance,
What about the culture? The
From the above it is clear that any
statistics on murder rates says nothing about the efficacy of gun control laws,
but rather about the cultural and/or societal factors that make such laws
ineffective. If you wish statistics to serve as evidence for a gun control law,
find something else.
For the above reasons you must search for
other evidence to support whatever statistics you use as support, if only to
show that the statistics actually apply.
Do not, however, take all the problems
outlined above as a condemnation of statistics as evidence. Statistics are
excellent evidence, and often the easiest and most concise way to express
evidence. I merely wish you to be aware you must examine them for relevance,
validity and authority or they can do you more harm than good in proving your
point.
Go to Forms of Evidence
Contents Page
Go to The
Process of Research Page
Return to Research
Contents Page
Return to Taflinger's
Home Page
You can reach me by e-mail
at: richt@turbonet.com
This page was created by
Richard F. Taflinger. Thus, all errors, bad links,
and even worse style are entirely his fault.
Copyright
© 1996, 2011 Richard F. Taflinger.
This and all other pages created by and containing the original work of Richard
F. Taflinger are copyrighted, and are thus subject to
fair use policies, and may not be copied, in whole or in part, without express
written permission of the author richt@turbonet.com.
Disclaimers
The information provided on this and other pages by
me, Richard F. Taflinger (richt@turbonet.com), is under my own
personal responsibility and not that of
In addition,
I, Richard F. Taflinger, accept no responsibility for
WSU or ERMCC material or policies. Statements issued on behalf of